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a b s t r a c t

GARCH volatility models with fixed parameters are too restrictive for long time series due to breaks in the
volatility process. Flexible alternatives are Markov-switching GARCH and change-point GARCH models.
They require estimation by MCMC methods due to the path dependence problem. An unsolved issue is
the computation of their marginal likelihood, which is essential for determining the number of regimes
or change-points. We solve the problem by using particle MCMC, a technique proposed by Andrieu et al.
(2010). We examine the performance of this new method on simulated data, and we illustrate its use on
several return series.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

GARCH models with fixed parameters are used to model and
predict the volatility of financial time series since the contribu-
tions of Engle (1982) and Bollerslev (1986). When estimating such
models a common finding is that conditional variances are strongly
persistent, especially for long time series. This high degree of per-
sistence (very close to unit root type) has been questioned, see
e.g. Noh et al. (1994). Several researchers, e.g. Diebold (1986)
and Mikosch and Starica (2004), have argued that the nearly in-
tegrated behavior of conditional variances is due to changes in
the parameters of the GARCH process, which are overlooked if the
model specification imposes fixed parameters.

An interesting way of making GARCH models more flexible is
enriching them with a dynamic discrete latent state Markov pro-
cess in such away that the parameters can switch fromone value to
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another.1 These models are called Markov-switching (MS) GARCH
models when the Markov chain is recurrent, see among oth-
ers (Francq and Zakoian, 2008; Bauwens et al., 2010). Change-point
(CP) GARCH models, see He and Maheu (2010), arise when the
chain is not recurrent, a feature that makes these models non-
stationary. Whether a MS- or CP-GARCH model is estimated, the
number of possible states (or regimes) must be chosen. To do this,
one can maximize the marginal likelihood which is the usual tool
for model choice in Bayesian inference. However, the computation
of themarginal likelihood for aMS- or CP-GARCHmodel, andmore
generally models subject to the path dependence problem, is an
unsolved difficult problem.

In this paper, we solve this problem by applying a parti-
cle Markov chain Monte Carlo (PMCMC) method, a technique

1 Other more flexible GARCH models are component models, e.g. Ding and
Granger (1996), smooth transitionmodels, e.g. Gonzales-Rivera (1998), andmixture
models, e.g. Haas et al. (2004a). Markov-switchingmodels that circumvent the path
dependence problem are proposed by Gray (1996) and Haas et al. (2004b), and non-
stationary GARCH models by Engle and Rangel (2008); Baillie and Morana (2009)
and Amado and Terasvirta (2011).
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introduced by Andrieu et al. (2010). This approach is particularly
suitable for conducting inference in non-linear state space mod-
els as pointed out by Flury and Shephard (2011). The MS- and CP-
GARCHmodels belong to this class. For a fixed number of regimes, a
Gibbs sampling algorithm for Bayesian inference on theMS-GARCH
model has been proposed by Bauwens et al. (2010). They sam-
ple the state variables individually, whereas in our new algorithm,
called particle Gibbs sampler, they are sampled jointly. This makes
a big difference in performance, due to the strong dependence be-
tween the state variables. Using PMCMC, it turns out that we can
also go one step further and compute the marginal likelihood us-
ing either bridge sampling, as proposed byMeng andWong (1996),
or the method of Chib (1996), see also Chib and Jeliazkov (2001).
Note that the marginal likelihood can be computed in MS-ARCH
models, introduced byHamilton and Susmel (1994) and Cai (1994),
where the conditional variance depends only on past shocks. For
example, Kaufman and Fruhwirth-Schnatter (2002) compute the
marginal likelihood for a MS-ARCH model using Chib (1996), and
mention that it cannot be extended to the MS-GARCH case due to
the path dependence problem.

The path dependence problem occurs because the conditional
variance at time t depends on the entire sequence of regimes vis-
ited up to time t , due to the recursive nature of the GARCH process.
Since the regimes are unobservable, one needs to integrate over
all possible regime paths when computing the likelihood function.
However, the number of possible paths grows exponentially with
t , rendering the likelihood evaluation unfeasible. In the CP-GARCH
model, the path dependence problem is less acute, since the num-
ber of regimes visited up to time t increases at least linearly in t but
not exponentially. The path dependence is the reason why maxi-
mum likelihood estimation is very difficult, if not out of reach, for
MS-GARCHmodels even for a given number of regimes. The possi-
bility to compute the likelihood function by the PMCMC algorithm
mentioned above is not useful for ML estimation by standard op-
timization algorithms because the likelihood function is approxi-
mated by simulation in such a way that it is not differentiable with
respect to themodel parameters, see Pitt et al. (2010) who develop
a general framework for computing the marginal likelihood using
SMC.

PMCMC combines the advantages of sequential Monte Carlo
(SMC) and Markov chain Monte Carlo (MCMC). Particle filtering,
a widely applied SMC method, provides a discrete approximation
of a distribution of interest that contains latent variables, see for
example Fernandez-Villaverde and Rudio-Ramirez (2007) and Jo-
hannes et al. (2009). Andrieu et al. (2010), ADHhereafter, make use
of SMC to build high dimensional proposal distributions for MCMC
samplers. We use a particle filter algorithm to sample the state
variables jointly given the parameters of MS- and CP-GARCHmod-
els, and we sample these parameters given the states. Therefore
thanks to the particle filter, we directly sample from an unknown
full conditional distribution as typically done in a Gibbs sampler,
hence the name particle Gibbs sampler. We adapt the particle fil-
ter of ADH for the states in two ways in our sampler. First, we use
an auxiliary particle filter of Pitt and Shephard (1999) to enhance
the diversification of the particles. Second, we sample backward,
rather than forward, the full state vector using a smoothing ap-
proach similar to Godsill et al. (2004). Moreover, we can also use
the particle filter algorithm to compute the likelihood function for
a given number of regimes since it integrates out the full state vec-
tor. Thanks to this, the computation of the marginal likelihood be-
comes feasible.

It is an empirical question whether aMS-GARCHmodel or a CP-
GARCH model (or any other model) is better fitting a particular
series. We apply the two types of models (MS and CP) to several
series of returns over the period 1999–2011. For four US stock
indices,MS-GARCHmodelswith two regimes dominate CP-GARCH

models. One regime of the MS models has a low unconditional
volatility regime and the other has a high level. For individual stock
returns and one commodity index, more regimes (MS) or breaks
(CP) are selected and MS models are preferable in all cases, with
small differences between marginal log-likelihood values. For the
dollar/yen exchange rate, a MS-GARCHmodel with two regimes is
favored.

We follow the standard practice in econometrics for model
comparison. We first pick the number of regimes and then move
on to inference. However, in the context of models without path
dependence appealing alternatives have been proposed to prevent
fixing the number of regimes in advance. First, there is the re-
versible jump MCMC algorithm of Green (1995) which allows a
change in the dimension of the MCMC by applying a more gen-
eral Metropolis–Hasting step. Second, the sticky infinite hidden
Markov-Chain of Fox et al. (2008), based on the hierarchical Dirich-
let process of Teh et al. (2006), implements a non-parametric
transition matrix that can handle an infinite number of regimes;
see Dufays (2012) for an implementation of this alternative in the
GARCH context. Third, Carlin and Chib (1995) develop a MCMC al-
gorithm that encompasses all the parameters for each number of
regimes. These three alternatives of sampling both the number of
breaks and parameters are potentially applicable using the PMCMC
approach and are challenging topics for future research.

The rest of the paper is organized as follows. In Section 2, we
present the particle Gibbs algorithm we propose for posterior in-
ference on the parameters of MS- and CP-GARCH models. In Sec-
tion 3, we explain the two methods for computing the marginal
likelihood. In Section 4, we illustrate the algorithm on simulated
and real data. Furthermore, we discuss the sensitivity to the choice
of the priors, the mixing properties of the sampler and provide
a comparison with alternative algorithms. Conclusions are pre-
sented in the last section.

2. Inference for MS- and CP-GARCHmodels

We consider the model defined by

yt = σtϵt

σ 2
t = ωst + αst y

2
t−1 + βst σ

2
t−1

ϵt ∼ N(0, 1), (1)

where st is an integer random variable taking values in [1, K + 1].
We define YT = {y1, . . . , yT }′ and ST = {s1, . . . , sT }′ where T de-
notes the sample size, and θ = (ω1, . . . , ωK+1, α1, . . . , αK+1, β1,
. . . , βK+1). The latent state process {st} is first order Markovian ei-
ther with the transition matrix

PS =



p11 p12 p13 · · · p1K 1 −

K
j=1

p1j

p21 p22 p23 · · · p2K 1 −

K
j=1

p2j

· · · · · · · · · · · · · · · · · ·

pK1 pK2 pK3 · · · pKK 1 −

K
j=1

pKj

pK+1,1 pK+1,2 pK+1,3 · · · pK+1K 1 −

K
j=1

pK+1,j


,

where pij = P[st = j|st−1 = i], or with the absorbing and non-
recurrent transition matrix

PC =


p11 1 − p11 0 · · · 0 0
0 p22 1 − p22 · · · 0 0
· · · · · · · · · · · · · · · · · ·

0 0 0 · · · pKK 1 − pKK
0 0 0 · · · 0 1

 .
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The first transitionmatrix characterizes aMarkov-switchingmodel
(MS-GARCH) with K + 1 regimes and the second a change-point
model (CP-GARCH) with K breaks. A conditional SMC, that is
a generic algorithm, is used for estimating the model so that
other distributional assumptions than the normal, a non-zero
conditional mean, and other functional forms for the conditional
variance σ 2

t can be easily handled. Further researchwill be devoted
to this. In fact, a state dependent mean would make it easier to
separate the regimes. A relevant empirical issue is the value K
and the choice between a model with recurrent states (PS) or
non recurrent states (PC ). The marginal likelihood is a standard
Bayesian criterion to make this choice.

Estimation by maximum likelihood of the model parameters,
consisting of θ and P , where P denotes the unrestricted elements
of PS or PC , is unfeasible for realistic sample sizes because of the
path dependence problem. In fact, this would require integration
over the (K + 1)T possible paths in the case of a MS-GARCHmodel
and likewise the number of paths increase at least linearly in T (but
not exponentially) for a CP-GARCH model.

Bayesian inference is feasible by treating explicitly ST as a pa-
rameter, a technique called data augmentation. This is typically
done within a Gibbs sampling algorithm that samples from the
posterior distribution f (θ, P, ST |YT ) by iteratively drawing from
three full conditional distributions:

1. p(ST |θ, P, YT )
2. f (P|ST , θ, YT ) = f (P|ST )
3. f (θ |ST , P, YT ) = f (θ |ST , YT ).

Sampling from the last two distributions is standard. The full
conditional distribution of P is Dirichlet under a Dirichlet prior
distribution assumption, and the full conditional distribution of θ
can be simulated with an adaptive Metropolis–Hastings step the
details of which are given in the Appendix. After convergence, the
algorithm– called particle Gibbs in the sequel – generates a sample
{S iT , P

i, θ i
}
G1
i=1 which is a dependent sample of f (θ, P, ST |YT ). In the

next two subsections, we describe and explain how we draw a
full state vector from p(ST |θ, P, YT ) with a conditional sequential
Monte Carlo (SMC) algorithm.

2.1. Sampling the full state vector using a conditional SMC algorithm

Sampling the state vector ST is complex because of the path
dependence problem. Bauwens et al. (2010) sample each st given
the other, which gives a slowly converging and computationally
demanding sampler. We next show how we can draw ST in one
step using a SMC sampler that furthermore allows to compute the
marginal likelihood of the data as explained in Section 3.

We define St = {s1, . . . , st} and St+1
= {st+1, . . . , sT } and

likewise for Yt and Y t+1. We factorize p(ST |θ, P, YT ) as

p(sT |YT , θ, P)p(sT−1|sT , YT , θ, P) . . . p(st |St+1, YT , θ, P)

. . . p(s1|S2, YT , θ, P). (2)

For the CP-GARCH model the first and last distributions are
degenerate since sT = K + 1 and s1 = 1 with probability one.
We explain next how to sample ST by focusing on the typical term
p(st |St+1, YT , θ, P) which can be written as follows:

p(st |St+1, YT , θ, P) =
p(st |Yt , θ, P)f (Y t+1, St+1

|st , Yt , θ, P)f (Yt |θ, P)

f (St+1, YT |θ, P)

∝ p(st |Yt , θ, P)f (Y t+1, St+1
|st , Yt , θ, P)

∝ p(st |Yt , θ, P)f (Y t+1
|St , Yt , θ, P)p(st+1|st , P). (3)

The probabilities p(st |Yt , θ, P) (for each t and possible value of
st ) in (3) are complicated to evaluate because of the path depen-
dence problem. This problem can be alleviated by applying SMC

techniques. In particular, our SMC algorithm adds an auxiliary
particle, see Pitt and Shephard (1999) for details, to ease the sam-
pling of st . We denote by wi

t the normalized weights that are
associated to N particles {s1t , . . . , s

N
t } which represent possible re-

alizations of st . These weights serve to approximate the proba-
bility p(st |Yt , θ, P) that appears in (3), more specifically p(st =

j|Yt , θ, P) ≈
N

i=1 wi
t1{sit=j} with 1{} the indicator function. The

particle filter introduces an integer random variable η taking val-
ues in [1,N] and defines (we drop the conditions θ, P for ease)

p(st , η|Yt) ∝ f (yt |Yt−1, st)p(st |s
η

t−1)w
η

t−1

∝
f (yt |Yt−1, st)p(st |s

η

t−1)w
η

t−1g(st , η|Yt)

g(st , η|Yt)

∝
f (yt |Yt−1, st)p(st |s

η

t−1)w
η

t−1g(st |Yt , η)g(η|Yt)

g(st , η|Yt)
.

The intuition behind the first line of the formula above is that the
sum of p(st , η|Yt) over all values of η is the probability p(st |Yt)
which appears in (3). The idea is that the sampling of st from the
proposal distribution g(st , η|Yt) will be quite accurate if the pro-
posal takes into account yt . We take g(st , η|Yt) ∝ w

η

t−1p(st |s
η

t−1)

f (yt |Yt−1, st). Hence g(η|Yt) ∝ w
η

t−1
K+1

j=1 p(st = j|sηt−1)f (yt |st =

j, Yt−1). Finally,

p(st , η|Yt)

∝
f (yt |Yt−1, st)

K+1
j=1

f (yt |Yt−1, st = j)p(st = j|sηt−1)

p(st |s
η

t−1)g(η|Yt) (4)

since g(st |η, Yt) =
p(st |s

η
t−1)f (yt |Yt−1,st )K+1

j=1 f (yt |Yt−1,st=j)p(st=j|sηt−1)
.

To ensure convergence to the stationary distribution, Andrieu
et al. (2010) use the full path of each SMC particle (i.e. lineage)
and show that the ST draw and its lineage from the previous Gibbs
iteration needs to survive in the SMC algorithm. This is called the
conditional SMC. Define the ancestor variable Ak

t as the particle
from which the particle k at time t is sampled, and the lineage
variable bkt as the particle belonging to the path of the particle k
at time t . Set bkT := k so that we have the backward recursion

bkt = A
bkt+1
t . The bkt variable represents next the lineage of the

previous st draw.
The conditional SMC can be computed for p(st |Yt , θ, P) for t =

1, . . . , T , assumingwehave {s
bk1
1 , . . . , s

bkT
T } and given uniform initial

weights wi
0 = 1/N and initial particles si0 (equal to 0 for a change-

point model and a uniform draw for a MS-model) as:

1. ∀i ∈ [1,N], compute g i
t = wi

t−1
K+1

j=1 p(st = j|sit−1, P)f (yt |
Ft−1, θ, P, st = j), Ft−1 denoting the data and particles until
t − 1, and the normalized weights ω̃i

t = g i
t/
N

j=1 g
j
t .

2. ∀i ∈ [1,N] \ bkt , sample independently a label variable Ai
t−1 ∼

ω̃t such that Ai
t−1 ∈ [1,N].

3. ∀i ∈ [1,N] \ bkt , sample a particle sit ∼ p(st |s
Ait−1
t−1 , P).

4. ∀i ∈ [1,N], compute ŵi
t =

f (yt |Ft−1,sit ,θ,P)K+1
j=1 f (yt |Ft−1,θ,P,st=j)p(st=j|s

Ait−1
t−1 )

and

the normalized.

The SMC algorithm is derived from the formula (4). We start by
sampling ηi from g(η|Yt) (step 1), then we sample sit ∼ p(st |s

ηi
t−1)

(step 3), and we compute the weight f (yt |Yt−1,sit )K+1
j=1 f (yt |Yt−1,st=j)f (st=j|s

ηi
t−1)

(step 4). The normalized weights provide in fact an approximation
of the distribution p(st |Yt , θ, P). Note that the algorithm is
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computationally demanding since N particles are used for each t .
The choice of N is discussed in Section 4.1.

The sampler we develop is in line with the particle Gibbs
sampler defined in ADH. The particle Gibbs sampler extends the
target distribution by incorporating all randomvariables generated
by the conditional SMC, but ADH show that θ, P and ST are still
distributed according to the distribution of interest f (θ, P, ST |YT ).
The extended target distribution is f̃ (θ, P, ST , A1, . . . , AT−1, S̃1,
. . . , S̃T , k) where A1, . . . , AT−1, S̃1, . . . , S̃T , k are the set of random
variables generated by the SMC algorithm (At = {A1

t , . . . , A
N
t }, S̃t =

{s1t , . . . , s
N
t } and k denote the selected particle at time T in the

SMC sequence). The justification of our algorithm is based on
Theorem 5 in Section 4.5 of ADH which implies that the designed
particle Gibbs algorithm admits f (θ, P, ST |YT ) as invariant density.
This holds for a conditional SMC which considers a multinomial
resampling step and samples k from its full conditional under
f̃ ( ) and deterministically tracing back the ancestral lineage of SkT .
While the ADH algorithm is directly applicable to MS- and CP-
GARCH models, we deviate from this in our algorithm since we
apply an auxiliary particle filter and having sampled the particle
k we sample backward a new path bkt , as explained below. The
theorem still holds under these two adaptations embedded in our
algorithm:

• First, the auxiliary particle filter improves the resampling
scheme with respect to the multinomial resampling. Follow-
ing the argument of ADH and the mathematical derivation of
R. Chen in the discussion of ADH, the APF can be viewed as
a change in the intermediate distribution and hence does not
modify the theoretical properties of the standard particle filter
or the particle Gibbs.

• Second, following the discussion ofN .Whiteley in ADH, the par-
ticle Gibbs still works if we sample the particle k and sample a
newancestral lineage of this particle. Indeed,we can show– this
is related to the decomposition of p(st |St+1, YT , θ, P) presented
in (3) – that

f̃ (bkt |YT , θ, P, St+1, A1, . . . , AT−1, S̃1, . . . , S̃T , bkt+1, . . . , b
k
T , k)

∝ p(sb
k
t

t |Ft , θ, P)f (Y t+1
|Ft , St+1, sb

k
t

t , θ, P)p(sb
k
t

t |st+1)

∝ w
bkt
t f (Y t+1

|Ft , St+1, sb
k
t

t , θ, P)p(sb
k
t

t |st+1).

The advantage of this backward sampling is that it enables the
exploration of all possible ancestral lineages and not only those
obtained during the forward conditional SMC sequence.

To end the procedure, we iteratively sample backward an entire
state vector ST :

1. Sample k ∼ wT . Set bkT = k and sT = s
bkT
T .

2. ∀t = T − 1, . . . , 2, 1,
• ∀i ∈ [1,N] compute π i

t = wi
tλ

sit
t p(st+1|sit , P) and the

normalized weights π̃ i
t = π i

t/
N

j=1 π
j
t .

• Sample bkt ∼ π̃t and set st = sb
k
t

t .

The probability λ
sit
t , i.e. an approximation of the second term in

(3), is computed by considering the path of each particle. For each
q ∈ [1, K + 1], we compute

λ
q
t =

N
i=1

f (yt+1, . . . , yt+τ |sit , s
i
t+1, . . . , s

i
t+τ , Ft , θ, P)1

{sit=q}

N
i=1

f (yt+1, . . . , yt+τ |sit , sit+1, . . . , s
i
t+τ , Ft , θ, P)

,

where each f () is the product of Gaussian densities implied by
(1). The interval length τ is computed by solving the equation β

τi
i

= 0.001 for i = 1, . . . , K + 1 (β being the autoregressive coeffi-
cient of the GARCH equation) and by taking the maximum value of
τi. The full vector ST is therefore sampled from t = T until t = 1 as
written in (2). Remark that in this backward step of our algorithm,

we computeλ
s
bkt
t
t which is not equal to f (Y t+1

|Ft , St+1, sb
k
t

t , θ, P)but
can be viewed as a good approximation, see Section 4.5 for illustra-

tions. The computation of f (Y t+1
|Ft , St+1, sb

k
t

t , θ, P)would bemuch
more time consuming and avoiding it allows us to consider more
particles for the conditional SMC.2

Note that other SMC algorithms exist. For example, Whiteley
et al. (2011) build on the PMCMC theory of Andrieu et al. (2010) and
develop an interesting algorithm for a change-point model based
on a latent discrete variable. They do inference on the break dates
instead of the state vector itself (which is a one-to-one mapping).
Their procedure consists in incorporating a SMC algorithm with a
deterministic resampling step inside a MCMC algorithm to draw
the break dates. This improvement (as well as the gain in memory
storage) is particularly important when dealing with very long
time series. However, their algorithm is not able to manage the
path dependence problem, hence it is not applicable to the MS-
GARCH model. In fact, their deterministic resampling step would
require an evaluation of all new possible paths at each MCMC
iteration. Nevertheless, the idea of a deterministic resampling step
is worth exploring in further research on regime switching GARCH
models. Furthermore, as we show in Section 4.3, their interesting
idea of working with break dates leads to another algorithm in the
context of the CP-GARCH model.

3. Marginal likelihood

We use two ways to compute the marginal likelihood, a global
method that relies on bridge sampling, as proposed by Meng and
Wong (1996), and a local method based on themarginal likelihood
identity of Chib (1995). The difficulty of computation of the likeli-
hood f (YT |θ, P) is themain reasonwhy themarginal likelihood has
not been used. The SMC algorithm constitutes an interesting alter-
native to obtain an unbiased estimation of the quantity, see Chib
et al. (2000).

3.1. Bridge sampling

The marginal likelihood is defined as f (YT ) =

f (YT |θ, P)f (θ,

P)dθ dP . The bridge sampling idea is to estimate this integral by
using theMCMCoutput and an importance sampling approach. For
a given function t(θ, P) and a proposal density q(θ, P), we define

A1 =


t(θ, P)q(θ, P)f (θ, P|YT )dθ dP

A2 =


t(θ, P)f (YT |θ, P)f (θ, P)q(θ, P)dθ dP.

Meng and Wong (1996) highlight that f (YT ) = A2/A1 and that
the quantities A1 and A2 can be estimated by Â1 =

1
G1

G1
j=1 t(θ

j,

P j)q(θ j, P j) with {θ j, P j
} the G1 posterior draws, and Â2 =

1
G2

G2
j=1

t(θ j, P j)f (YT |θ
j, P j)f (θ j, P j), this time with G2 draws {θ j, P j

} from
q(θ, P). The likelihood f (YT |θ

j, P j) is computed (G2 times) by the

2 The backward step is not necessary, since we can also deterministically trace
back the ancestral lineage as proposed in ADH. This would lead to an exact MCMC
sampler (without any approximation). However we have observed that the MCMC
mixing properties are highly improved when the backward step is applied. An
example is provided in Section 4.5.
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conditional SMC algorithm described in Section 2. In fact,

f (YT |θ, P) = f (y1|θ, P)

T
t=2

f (yt |Yt−1, θ, P) (5)

where f (yt |Yt−1, θ, P) can be estimated by, see Pitt et al. (2010),
1
N

N
i=1

ŵi
t


N
i=1

g i
t


. (6)

Notice that if t(θ, P) = 1/q(θ, P), the method is equivalent
to importance sampling, and to reciprocal importance sampling if
t(θ, P) = 1/f (θ, P|YT ). We follow Meng and Wong (1996) who
obtain t(θ, P) = (f (θ, P|YT )+ q(θ, P))−1 as an asymptotically op-
timal choice which minimizes the expected relative error of the
estimator in the case of i.i.d draws from f (θ, P|YT ) and q(θ, P). The
proposal distribution q(θ, P) is split into two independent blocks
q(θ) and q(P). The two proposal distributions are respectivelymix-
tures of normal and beta distributions constructed with posterior
draws in order to cover the posterior support. A similar mixture
of normal distributions (see the Appendix) is used as proposal for
sampling θ in step 3 of the particle Gibbs algorithm sketched in the
beginning of Section 2.We refer the reader to Fruhwirth-Schnatter
(2004) for more details on the implementation of bridge sampling
and examples for mixture and Markov-switching models.

3.2. Chib’s method

As proposed by Chib (1995), the marginal likelihood can also be
computed as

f (YT ) =
f (θ∗, P∗)f (YT |θ

∗, P∗)

f (θ∗, P∗|YT )
(7)

where P∗ and θ∗ can be any admissible value but is typically cho-
sen to be a high density point like themode, mean ormedian of the
posterior distribution. The prior is easily computed and the likeli-
hood f (YT |θ

∗, P∗) is computed (once) by the SMC algorithm as in
the previous subsection.

The evaluation of the posterior distribution f (θ∗, P∗
|YT ) is done

in two parts. Since f (θ∗, P∗
|YT ) = f (P∗

|YT , θ
∗)f (θ∗

|YT ) we use in
the first part that

f (P∗
|YT , θ

∗) =


f (P∗

|YT , ST )p(ST |YT , θ
∗)dST

≈
1
G3

G3
g=1

f (P∗
|YT , S

g
T ), (8)

where SgT is the sampled value of ST at the g-th iteration of an
auxiliary Gibbs/PMCMC sampler where θ is kept fixed at θ∗, and G3
denotes the number of iterations after convergence. The auxiliary
sampler iterates between p(ST |θ∗, YT , P) and f (P|ST , YT ).

For the second part, we use the method of Chib and Jeliazkov
(2001) since we sample θ with a proposal distribution through a
Metropolis step. The method uses the reversibility of the Markov
chain generated by the PMCMC sampler to compute f (θ∗

|YT ). Let
us denote by α(θ ′, θ∗

|YT , P, ST ) theMetropolis–Hastings probabil-
ity to move from θ ′ to θ∗ and by q(θ ′, θ∗

|YT , P, ST ) the density
of the proposal at (θ ′, θ∗). The sub-kernel satisfies the local re-
versibility condition

f (θ∗
|YT , ST , P)α(θ∗, θ ′

|YT , ST , P)q(θ∗, θ ′
|YT , ST , P)

= f (θ ′
|YT , ST , P)α(θ ′, θ∗

|YT , ST , P)q(θ ′, θ∗
|YT , ST , P).

By multiplying both sides by f (P, ST |YT ) and integrating over
(θ ′, P, ST ), we get

f (θ∗
|YT )

=

  
α(θ ′, θ∗

|YT , ST , P)q(θ ′, θ∗
|YT , ST , P)f (θ ′, P, ST |YT )dθ ′dPdST  

α(θ∗, θ ′|YT , ST , P)q(θ∗, θ ′|YT , ST , P)f (P, ST |YT , θ∗)dθ ′dPdST
.

(9)

Relying on the posterior draws of the particle Gibbs sampler and
of the auxiliary Gibbs/PMCMC sampler, a Monte Carlo estimate of
(9) can be computed. Interested readers are referred to Chib (1995)
and Chib and Jeliazkov (2001).

For Markov-switching models Fruhwirth-Schnatter (2004)
highlights that Chib’s marginal likelihood estimator is biased. The
reason is that the posterior distribution is invariant to the labeling
of the states, and therefore the marginal likelihood computation
requires to explore all possible labels. In fact, the marginal likeli-
hood can also be written as f (YT ) = (K + 1)!


L1

f (YT |θ, P)f (θ,

P)dθ dP with L1 the subspace for the first labeling. In practice,
sampling from L1 only is difficult to impose and therefore we do
not apply this correction. Furthermore, the bias in the logmarginal
likelihood is not higher than log(K + 1)!, which is small for small
values of K as we use in this paper.

The marginal likelihood estimator à la Chib is a bridge sam-
pling estimator corresponding to a specific non-optimal choice of
t(θ, P), see Meng and Schilling (2002); Mira and Nicholls (2004)
and Ardia et al. (2012) for examples. However the bridge sampling
estimator with optimal choice of t(θ, P) is derived asymptotically
and assumes i.i.d draws of the posterior distribution, so it is inter-
esting to provide an empirical comparison of the two estimators,
as we do in the next section. We remark finally that Chib’s esti-
mator requires to launch G3 auxiliary particle Gibbs samplers, and
is therefore as time-consuming as the bridge sampling estimator
that requires to launch G2 SMC samplers, assuming that G2 an G3
are equal.

4. Illustrations

This section is divided in five parts. To be precise on the im-
plementation of the sampler in the illustrations, we first describe
the prior distributions, starting values and other parameters of the
algorithm. Second, we illustrate the approach on simulated data,
which allows us to check if the correct model is chosen by the
marginal likelihood criterion and to investigate the posterior dis-
tributions ofmisspecifiedmodels. Thirdly, we provide applications
to daily returns of eleven return series. Fourthly, we discuss and
illustrate the sensitivity of the marginal likelihood to the prior dis-
tribution. Finally, we discuss and illustrate the performance of the
PMCMC sampler.

4.1. Prior distributions, starting values and other parameters

We use standard prior distributions for this type of models. We
assume independence between the transition matrix parameters
P and the GARCH parameters θ . Following Chib (1996, 1998), the
prior on P is a Dirichlet distribution. The prior hyperparameters
are given in Table 1. They imply a probability of 0.9991 to stay in
a given regime, or an expected duration of 1111 days in a given
regime, which is similar to He and Maheu (2010). The prior on the
GARCH equation parameters is specified in terms of appropriate
transformations of the elements of θ – see the note of Table 1 –
and is a multivariate normal distribution with a diagonal covari-
ance matrix having large variances. The sensitivity of the results,
i.e. selection of optimal number of regimes using themarginal like-
lihood, to the choice of the hyperparameters is discussed in Sec-
tion 4.4.
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Table 1
Hyperparameters of the prior distributions.

GARCH parameters (θ )

Distribution:
µ = (µω, µα, µβ )′ Σ = 8I3(K+1)
µω = (−4, . . . ,−4) Normal(µ, Σ)

µβ =

ln( 0.75

0.25 ), . . . , ln( 0.75
0.25 )


, µα =


ln( 0.25

0.75 ), . . . , ln( 0.25
0.75 )


Transition probabilities (P)

Model Distribution:
CP-GARCH α = 1110.11, β = 1 Beta(α, β)

MS-GARCH α =

K × 1110.11 1 · · · · · · 1
1 K × 1110.11 1 · · · 1
· · · · · · · · · · · · · · ·

1 1 1 · · · K × 1110.11

 Dirichlet(α)

Note: GARCH parameters are mapped on the real line with ω ∈]0, +∞] → lnω, α ∈]0, 1[→ ln


α
1−α


, and β ∈]0, 1[→ ln


β

1−β


. K is

the number of regimes minus 1.

Although the particle Gibbs algorithm should converge in prin-
ciple for any starting point in the parameter space, a high density
starting value for the parameters ensures a quicker convergence
to the posterior distribution. For the MS- and CP-GARCH models
considered here, we use the particle swarm optimization method,
see Kennedy and Eberhart (1995), to find starting values that are
likely to be close to the maximum likelihood estimate.

For every model, we perform 10,000 particle Gibbs itera-
tions (G1) after convergence according to the Geweke diagnostic
(Geweke, 1992). The marginal likelihood is computed by bridge
sampling with 1000 draws (G2) of the proposal distribution, and
by Chib’s method using the posterior median of each parameter,
by running 600 auxiliary particle Gibbs iterations (G3). We fix the
number of particles (N) to 150 for CP-GARCH and 250 for MS-
GARCHmodels, respectively. These numbers are obtained by com-
paring the autocorrelation times for N = 25, 50, 100, 150, 250
and 500 for several financial time series used in this paper. For se-
ries like the S&P500, N could be even as small as 100 for both the
MS and CP-GARCH models. These number are very low compared
to the several thousands of particles used formodelswith a contin-
uous state vector or models that use the particle filter for inference
on all the parameters, as He and Maheu (2010) who use 300,000
particles for a CP-GARCH model.

Note that inference on themodels described here requires non-
trivial programming andmany computations that can be time con-
suming. For example, given the configuration defined above, and
for a sample size of 3000 observations, the computing time for es-
timating a MS- or CP-GARCHmodel (including the marginal likeli-
hood) with K = 2 is of the order of 3 h on a Intel Core 2 Duo 3 GHz
with 3.48 GB RAM memory. This is about 200 times more than for
the standard GARCHmodel. Inference for themodels has been pro-
grammed in C++. Executable codes, data, and some illustrations
are available on the web site of Arnaud Dufays.3

4.2. Illustrations with simulated data

We illustrate our algorithm and the marginal likelihood com-
putation on two simulated data sets of 3000 observations. The first
dataset is generated by a CP-GARCH model with two breaks and
the second by a MS-GARCHmodel with two regimes. We compute
the marginal likelihood for the true number of regimes plus one to
illustrate that the algorithm selects the true model, and we report
some posterior information. A Monte Carlo study investigating the
sampling properties of the ‘‘Bayesian estimator’’ is infeasible given
the computation time this would imply.

3 https://sites.google.com/site/websiteofarnauddufays/.

Table 2
Marginal log-likelihood values for 3000 simulated data of CP-GARCH.

Regimes 1 2 3 4

Change-point

BS −5463.22 −5451.42 −5438.43 −5442.10
Chib −5463.00 −5450.28 −5438.09 −5439.78

Markov-switching

BS −5463.22 −5448.95 −5442.05 −5445.63
Chib −5463.00 −5448.14 −5441.07 −5443.66

Note: The parameters of the 3-regime CP-GARCH DGP are shown in Table 3.

4.2.1. CP-GARCH data
The true parameter values that we used to simulate 3000

observations are given in Table 3. A structural break occurs after
1000 observations and another one after 2000. This implies that
the probabilities p11 and p22 are equal to 0.999. The persistence
of the volatility processes, measured by α + β , is 0.9 in the first
and second regimes and 0.6 in the third regime. The unconditional
variance jumps from 2 to 7 in the second regime and drops to 1 in
the third regime.

The marginal likelihood values (in logarithms, MLL hereafter)
computed for MS- and CP-GARCH models are given in Table 2.
The differences between the values estimated by bridge sampling
(BS) and by Chib’s method are very small. The fact that both the
global and local way of computing the marginal likelihood gives
the same results indicates that we obtain the correct estimate with
high probability. The CP-GARCHmodelwith three regimes (i.e. two
breaks) is correctly selected among all models, and consistently
with thedata generating process (DGP), theMS-GARCHmodelwith
three regimes is selected among MS-GARCH models. We observe
that the MLL increases substantially from one to three regimes but
decreases less strongly beyond the correct number of regimes. In
fact, imposing one superfluous regime is less harmful thanmissing
an existing one.

Tables 3 and 4 display posterior information about the param-
eters of the GARCH equations and of the transition matrix of all
the MS- and CP-GARCH models for which we report the MLL val-
ues. When the misspecified model with one regime is estimated,
we find that as expected the persistence is overestimated, i.e. 0.99,
and the unconditional variance amounts to 2.85. The ignored latent
state dynamics are partly picked up by the volatility dynamics.

The estimation of the misspecified one break CP-GARCH model
finds a break at observation 2007 of the 3000 observations. This
is no surprise since this is the biggest of the two breaks in the
DGP in the sense that the unconditional variance drops from seven
to one. The estimated parameters of the first regime are closest
to the first regime true parameter values. The estimated break

https://sites.google.com/site/websiteofarnauddufays/
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Table 3
Results for 3000 simulated data of 3-regime CP-GARCH: GARCH parameters.

DGP MLE given true states
Regime 1 2 3 1 2 3

ω 0.2 0.7 0.4 0.29 0.71 0.31
α 0.1 0.2 0.2 0.14 0.16 0.16
β 0.8 0.7 0.4 0.70 0.72 0.54
Break date 1000 2000

Change-point K = 0 Markov-switching K = 0
Regime 1 2 3 4 1 2 3 4

ω 0.05 0.05
(0.02) (0.02)

α 0.13 0.13
(0.02) (0.02)

β 0.86 0.86
(0.02) (0.02)

Change-point K = 1 Markov-switching K = 1
Regime 1 2 3 4 1 2 3 4

ω 0.12 0.31 0.19 0.67
(0.04) (0.08) (0.05) (0.24)

α 0.14 0.15 0.15 0.18
(0.02) (0.05) (0.03) (0.04)

β 0.83 0.54 0.72 0.71
(0.03) (0.10) (0.06) (0.05)

Break date 2007
(32.2)

Change-point K = 2 Markov-switching K = 2
Regime 1 2 3 4 1 2 3 4

ω 0.34 0.78 0.32 0.39 0.81 0.29
(0.14) (0.23) (0.07) (0.14) (0.24) (0.08)

α 0.15 0.17 0.17 0.15 0.17 0.15
(0.03) (0.04) (0.05) (0.03) (0.03) (0.04)

β 0.68 0.70 0.52 0.65 0.70 0.56
(0.12) (0.06) (0.09) (0.09) (0.05) (0.10)

Break date 1046 2010
(31.7) (8.5)

Change-point K = 3 Markov-switching K = 3
Regime 1 2 3 4 1 2 3 4

ω 0.26 0.76 0.42 0.24 0.38 0.30 0.82 2.24
(0.09) (0.22) (0.18) (0.09) (0.06) (0.15) (0.08) (0.22)

α 0.13 0.19 0.10 0.41 0.15 0.14 0.17 0.03
(0.03) (0.03) (0.04) (0.17) (6E-4) (0.03) (0.04) (0.03)

β 0.73 0.69 0.51 0.33 0.65 0.56 0.70 0.90
(0.06) (0.05) (0.16) (0.14) (0.08) (0.09) (0.05) (0.11)

Break date 1007 2011 2847
(36.7) (6.7) (170.4)

Note: Posterior means and standard deviations in parentheses. The break dates are the posterior
modes of the state variables.

Table 4
Results for 3000 simulated data of 3-regime CP-GARCH: transition probabilities.

Regimes Change-point Markov-switching

K = 2

0.9994 0.0006

0 1

 
0.9990 0.0010
0.0007 0.9993



K = 3

0.9991 0.0009 0
0 0.9990 0.001
0 0 1

 0.9990 0.0006 0.0004
0.0003 0.9994 0.0003
0.0006 0.0003 0.9991


K = 4

0.9991 0.0009 0 0
0 0.9990 0.001 0
0 0 0.9982 0.0018
0 0 0 1


0.9991 0.0003 0.0003 0.0003
0.0002 0.9991 0.0005 0.0002
0.0002 0.0002 0.9991 0.0005
0.0004 0.0003 0.0002 0.9991


Note: Posteriormeans of the transition probabilities. The DGP parameters of the 3-regime CP-GARCHmodel are given
in Table 3.

dates of the correctly specified two breakmodel are 1046 and 2010
(with standard deviations 31 and 8) compared to the true values of
1000 and 2000 respectively. The corresponding volatility process
parameter estimates are also reasonably close to the true values if
we take into account the posterior standard deviations. The three

break CP-GARCHmodel finds a spurious estimated regime starting
at observation 2847, i.e almost at the end of the sample as expected
since the third break has to occur in-sample by construction. The
high standard deviation of 170 clearly indicates that this break
date is highly uncertain, in contrast with what occurs for the other
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Table 5
Marginal log-likelihood values for 3000 simulated data of MS-GARCH.

Regimes 1 2 3 4

Change-point

BS −5879.88 −5862.75 −5848.05 −5851.07
Chib −5879.56 −5859.22 −5846.93 −5850.99

Markov-switching

BS −5879.89 −5843.55 − 5849.04 –
Chib −5879.67 −5843.05 − 5849.48 –

Note: The DGP parameters of the 2-regime MS-GARCHmodel are shown in Table 3
(regimes 1 and 2 of DGP).

breaks. As expected, the estimated parameters of themore general
three-regime MS-GARCH model are globally in line with the true
parameters. For the MS-GARCH models, though more regime
switches can in principle occur, the dates of regime switches are
very close to those reported for the break models. Finally, three
regimes of the over-fitted four regime MS-GARCH model have
regime parameters close to the MLE given true states parameters,
while the spurious regime has completely different parameters
implying an unreasonably high unconditional variance.

The posterior means of the transition probabilities in Table 4
are close to the prior means. Actually, the prior information about
these parameters is quite close to the data information, since ex-
pected durations of staying in a given regime are 1111 in the prior
and 1000 in the DGP. We checked the robustness of our results by
varying the beta hyper-parameters. Our conclusion is that, simi-
lar to He and Maheu (2010), an informative prior is necessary to
ensure that the conditional SMC behaves well and then it does
not affect the posterior distribution. For example, for the correctly
specified model with a less informative prior (p ∼ Beta(100, 0.5),
implying expected durations of 201 observations), the estimated
break dates of 999 and 2029 (with standard deviations 32 and 21)
are close to those in Table 3.

4.2.2. MS-GARCH data
We simulated 3000 observations of a two-regime MS-GARCH

model with the same GARCH parameters for the first two regimes
as in the CP-GARCHmodel, see Table 3. The transition probabilities
are given by p11 = 0.9999 and p22 = 0.9995. They are chosen to
be high in order to have only two regime switches, so that the CP-
GARCHmodel can also cover this case without needing to estimate
models with many breaks. For conciseness, we do not report the
posterior results as in Table 3.

Table 5 presents the MLL values. The differences between the
values by bridge sampling (BS) and Chib’s method are again very
small. The MS-GARCHmodel with two regimes is correctly chosen
as the best model. As expected, in the CP-GARCH class the three-
regime model has the highest MLL.

4.3. Illustrations on financial time series

We first provide detailed results for MS- and CP-GARCHmodels
fitted to S&P 500 daily index returns. Next, we provide results
for ten other series. For the sake of comparison, we also estimate
the spline GARCH model of Engle and Rangel (2008). The latter
model is more flexible than the standard GARCH model since
in addition to the usual GARCH dynamics it captures long run
volatility movements by spline functions. It is defined as

yt = τtgtϵt , ϵt ∼ N(0, 1),

g2
t = (1 − α − β) + α(yt−1/τt)

2
+ βg2

t−1

τ 2
t = γ exp


λ0t +

k
i=1

λi[(t − ti−1)+]
2


,

Table 6
Marginal log-likelihood values for S&P 500 data.

Regimes 1 2 3 4

Change-point

BS −4505.33 −4505.83 −4503.05 −4519.23
Chib −4504.95 −4505.93 −4502.97 −4516.16

Markov-switching

BS −4505.31 −4497.99 −4502.74 –
Chib −4505.08 −4496.04 −4497.73 –

Table 7
Minima and maxima of ten marginal log-likelihood estimates for S&P 500 data.

Regimes 1 2 3

Change-point

BS-min −4505.36 −4506.02 −4503.01
BS-max −4505.28 −4505.40 −4502.61
Chib-min −4505.11 −4506.04 −4503.20
Chib-max −4504.97 −4505.44 −4502.12

Markov-switching

BS-min −4505.36 −4497.99 −4505.01
BS-max −4505.28 −4497.50 −4501.89
Chib-min −4505.11 −4496.94 −4505.35
Chib-max −4504.97 −4493.81 −4497.73

where (α, β, γ , λ0, . . . , λk) are parameters, (t−ti)+ = min(0, t−
ti) and {t0 = 0, t1, t2, . . . , tk−1} are time indices (knots)
partitioning the sample size T in k equally spaced intervals. For this
model, the number of knots is chosen by the BIC criterion and the
prior density to be integrable but fairly little informative since it is
uniform on finite intervals for each parameter.

4.3.1. S&P 500 index
We use a sample of 3000 daily percentage returns from May

20, 1999 to April 25, 2011. The time series is plotted in Fig. 1 with
estimated regime switches shown by vertical lines.

The MLL estimates computed by bridge sampling and by Chib’s
method are given in Table 6 and they indicate that the two-
regimeMS-GARCHmodel fits the data best. There are three regime
switches, occurring on July 22, 2003, June 15, 2007, and September
27, 2010, which make sense after inspecting Fig. 1. These dates are
the modes of the posterior draws of the state variables; estimation
uncertainty as measured by posterior standard deviations is
respectively 37, 17 and 20. The second best model, with a decrease
in MLL of about 5, is the CP-GARCH model with two breaks (three
regimes), at dates July 18, 2003 and June 14, 2007 (see the values
in italics in the table).

To get an idea about the precision of the marginal likelihood
estimators, we computed the MLL ten times for the models in
Table 6 (up to three regimes) using different seeds. More than
ten times would be desirable but too computationally intensive.
It turns out that both the BS and Chib estimators seem to be fairly
precise. From Table 7 we see that for the best MS-GARCH model
(two regimes) the difference between themaximumandminimum
MLL is 0.49 and 3.13 for the BS and Chib’s estimators, respectively.
For the best CP-GARCH model (with three regimes), the difference
is 0.40 and 1.08 for the BS and Chib’s estimators, respectively.

Table 8 provides the posterior means for the single regime
GARCHmodel and the best MS- and CP-GARCHmodels. The single
regime GARCH model has an unconditional variance of 1.67, with
a persistence of 0.99. The first regime in the CP-GARCH model has
a higher unconditional variance of 1.95 with a lower persistence
of 0.95, the second regime unconditional variance is equal to 0.45,
with the same persistence as the first regime. Finally in the last
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Fig. 1. S&P 500 index returns with switches from the 2 regime MS-GARCH model.

Table 8
Posterior means for S&P 500.

Regime GARCH CP-GARCH MS-GARCH
σ 2 α β σ 2 α β σ 2 α β

1 1.67 0.075 0.915 1.95 0.085 0.868 2.32 0.089 0.891
(0.51) (0.009) (0.011) (0.32) (0.020) (0.031) (0.512) (0.012) (0.015)

2 0.45 0.023 0.931 0.46 0.031 0.901
(0.033) (0.011) (0.027) (0.036) (0.013) (0.042)

3 2.75 0.098 0.890
(0.792) (0.015) (0.016)

Note: The (local) unconditional variance σ 2 is computed as ω/(1 − α − β).

regime, triggered in June 2007, the unconditional variance jumps
to 2.75, with a persistence of 0.99 due to the relatively high pos-
terior mean of 0.098 for α. The two-regime MS-GARCH model has
local unconditional variances of 2.32 and 0.46, with persistences of
0.98 and 0.93, respectively. This model alternates between these
two regimes, and detects a switch back to the low volatility regime
in September 2010. The CP-GARCH model does not infer a new
episode of low volatility at the end of the sample, contrary to the
MS-GARCH model.

The α and β parameter estimates (posterior means of 0.073
and 0.902, respectively) for the best spline-GARCH model (which
has three knots) are very close to the estimates for the standard
GARCH model. Fig. 2 provides a graphical comparison of the
spline-GARCH and the CP and MS-GARCH models in terms of local
unconditional variances and volatility persistence (α + β). While
the spline-GARCH has a smooth unconditional volatility function
determined by the three knots, the MS- and CP-GARCH models
have local constant levels, which for forecasting purposes may be
more desirable. Visually, the short term volatilities are very similar
for the three models.

Finally, we also estimated the above models on the S&P 500
index starting at April, 1988 instead of May, 1999 which increases
the sample size from 3000 to 5800 observations. The MS-GARCH
model, with a MLL of − 7840.31, is still the preferred model but
now with three regimes instead of two regimes for the shorter

series analyzed above. Similarly, the best CP-GARCH model has
now five regimes instead of three with a marginal likelihood of
−7857.99.

4.3.2. Other series
To get more insight in the differences between MS- and CP-

GARCHmodels, we provideMLL estimates for three othermajor US
indices, five stocks, one exchange rate, and one commodity index.
For each series, we estimated the models on data from May 20,
1999 to April 25, 2011 (3000 observations). Table 9 reports the
MLL estimates of the best CP- andMS-GARCHmodels togetherwith
the single regimeGARCHmodel, and themaximized log-likelihood
values of the spline-GARCH and all othermodels. The reportedMLL
values are those obtained by bridge sampling, the values obtained
by Chib’s method are close to them and not reported to save space.

To compare the MLL values of two models, we use the informal
rule of Kass and Raftery (1995). If the logarithm of the Bayes factor
(log-BF) is smaller than 1, the evidence in favor of the model
that has the highest value is ‘‘not worth than a bare mention’’,
whereas if it is larger than 1, the evidence is positive, and strong
if it exceeds 3. For the 11 series, the log-BF values are higher for
theMS-GARCHmodel than for the CP-GARCHmodel. The evidence
is positive in all cases, and strong in 8 of these cases. The standard
one-regime GARCH model has even lower log-BF values than the
CP-GARCH model, except when they are identical (i.e. the CP-
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Fig. 2. Unconditional volatility (top) and conditional volatility (bottom), S&P 500.

Table 9
Marginal log-likelihoods (MLL) for various time series.

Series Spline-GARCH GARCH CP-GARCH MS-GARCH
knots log-lik log-BF log-lik MLL K + 1 log-lik log-BF K + 1 log-lik log-BF nswitch

S&P 500 3 −4477.36 5.21 −4494.55 −4505.33 3 −4476.70 2.28 2 −4478.59 7.34 3
DJIA 3 −4307.91 2.99 −4322.79 −4333.43 1 −4322.79 0 2 −4307.84 4.7 3
NASDAQ 3 −5404.39 3.20 −5418.99 −5429.84 1 −5418.99 0 2 −5407.31 1.94 7
NYSE 3 −4355.77 2.40 −4369.77 −4380.62 1 −4369.77 0 2 −4355.14 3.91 13
BAC 4 −6088.38 16.62 −6117.49 −6127.39 3 −6036.22 50.12 3 −6004.31 79.49 11
BA 4 −6140.58 9.10 −6163.93 −6174.57 2 −6145.80 8.9 2 −6138.95 11.48 6
JPM 3 −6370.73 8.82 −6388.83 −6400.27 3 −6365.39 5.17 3 −6355.66 7.22 9
MRK 5 −6136.08 48.78 −6198.78 −6209.73 5 −5906.74 215.39 3 −5789.39 335.23 56
PG 4 −4795.84 16.34 −4832.63 −4842.02 3 −4787.49 24.23 2 −4780.89 33.6 9
Metals 2 −5239.80 6.66 −5256.63 −5267.44 2 −5236.85 11.33 2 −5228.87 14.68 5
Yen/Dollar 1 −2966.94 −3.34 −2972.94 −2982.33 1 −2972.94 0 2 −2954.46 3.05 7

Note: log-lik: Maximum of the log-likelihood values over all the MCMC draws; MLL: marginal log-likelihood value computed by bridge sampling; log-BF: log Bayes factor
with respect to the standard GARCH model; K + 1: number of regimes; nswitch: number of regime switches. S&P 500: Standard and Poors 500 index; NASDAQ: Nasdaq
Composite Index; DJIA: Dow Jones Industrial Average; NYSE: New York Stock Exchange Composite Index; BAC: Bank of America Corporation: BA: Boeing Co.; JPM: JPMorgan
Chase & Co.; MRK: Merck & Co Inc.: PG: Procter & Gamble Co. Metals: WCFI Base Metals Sub-Index.

GARCH model has a single regime). The spline model has a higher
log-BF than the MS model in two cases (NASDAQ and JPM, with
positive evidence), and a lower log-BF in the other cases (with
at least positive evidence in 10 cases, and strong in 8 of these).
In brief, regarding in-sample fit, there is clear evidence in favor
of the MS-GARCH model, i.e. recurrent regimes for the series we

have analyzed, but the spline model might be considered as a
useful alternative. Obviously, from this analysis it is unclear how
the models differ in producing volatility forecasts out-of-sample.
We checked the MS and CP-GARCH regime parameters that are
prevailing at the end of the sample period (values unreported
to save space) and we see pronounced differences both in the
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Table 10
Hyperparameters for the prior distributions.

Prior 1 : GARCH parameters (θ ) Distribution:

a = (aω, aα, aβ )′ b = (bω, bα, bβ )′

aω = (0, . . . , 0) bω = (25, . . . , 25) U[a, b]
aα = aβ = (0, . . . , 0) bα = bβ = (1, . . . , 1)

Prior 2 : GARCH parameters (θ ) Distribution:

µ = (µω, µα, µβ )′ Σ = 8I3(K+1)
µω = (−4, . . . ,−4) Normal(µ, Σ)

µβ =

ln( 0.75

0.25 ), . . . , ln
 0.75
0.25


,

µα =

ln
 0.25
0.75


, . . . , ln

 0.25
0.75


Prior 3 : GARCH parameters (θ ) Distribution:

µ = (µω, µα, µβ )′ Σ = 100I3(K+1)
µω = (−4, . . . ,−4) Normal(µ, Σ)

µβ =

ln
 0.75
0.25


, . . . , ln

 0.75
0.25


,

µα =

ln
 0.25
0.75


, . . . , ln

 0.25
0.75


Note: GARCH parameters for Prior 2 and Prior 3 are mapped on the real line. One to
one functions to map parameters are ω ∈]0, +∞] → lnω, α ∈]0, 1[→ ln


α

1−α


,

and β ∈]0, 1[→ ln


β

1−β


.

level and the dynamics of the (local) volatility process. Forecast
comparisons are left for further research.

Note that the log-likelihood values of MS- and CP-GARCHmod-
els can be very close. For example, the S&P 500 log-likelihood val-
ues in Table 9 are respectively −4478.59 and −4476.70 – thus
slightly higher for the CP model – but the MLL is higher for the
MS-GARCH model due to the penalization of the more heavily pa-
rameterizedCP-GARCHmodel (elevenparameters versus six). Sim-
ilarly for the DJIA, the two regime MS-GARCH has a log-likelihood
of −4307.84 while the three regime CP-GARCH has a value of
−4307.57.

The number of regimes in the MS-GARCH models varies be-
tween two and three, and one and five in the CP-GARCH models.
The four major indices have the same optimal number of regimes,
i.e. two, for the MS-GARCH model. As can be seen in Table 9, the
maximum number of MS regime switches over the index series is
thirteen,while it goes up to fifty-six for the individual series, which
is a relatively high number in order to be replicated by a CP-GARCH
model, especially knowing that some regimes have durations as
small as forty-four days. Note that the above discussion on the best
modelsmay depend on the choice of the prior hyperparameters, as
discussed next in Section 4.4.

4.4. Sensitivity of marginal likelihood to the prior distribution

It is well known, but perhaps too often neglected, that the
marginal likelihood is sensitive to the choice of the prior distri-
bution, see for example Kass and Raftery (1995) and Sinharay
and Stern (2002). Chib’s marginal likelihood identity, Eq. (7), par-
ticularly underlines the interdependence between the marginal
likelihood and the prior. The penalty for the introduction of new
parameters does not have to be too strong or too small, in the sense
that adding an extra regime should sufficiently improve the fit.
This section illustrates how the marginal likelihood based model
selection varies when using three different priors for the GARCH
parameters. Prior 1 uses a uniform distribution forω, α, and β . The
other two priors use Gaussian distributions on the GARCH param-
eters transformed to the real line. Prior 2 is the one used in the
paper so far, and Prior 3 is much more diffuse, see Table 10 for de-
tails. Each prior differently penalizes the marginal likelihood. The
uniform distribution on finite (small) intervals hardly imposes any
penalty for an extra regime. In contrast, Prior 3 strongly decreases
the marginal likelihood if an additional regime is imposed.

We study the model selection by the marginal likelihood cri-
terion for the two simulated data sets and the four US index

Table 11
Marginal log-likelihoods for various priors.

Series CP-GARCH
Prior 1 Prior 2 Prior 3
K +1 MLL K +1 MLL K +1 MLL

CP-data 3 −5435.78 3 −5438.43 3 −5447.94
MS-data 3 −5837.46 3 −5848.05 3 −5856.81
S&P 500 4 −4493.14 3 −4503.05 1 −4508.94
NASDAQ 4 −5423.00 1 −5429.84 1 −5433.31
DJIA 3 −4324.15 1 −4333.43 1 −4337.11
NYSE 3 −4373.01 1 −4380.62 1 −4384.2

MS-GARCH
Prior 1 Prior 2 Prior 3
K +1 MLL K +1 MLL K +1 MLL

CP-data 3 −5438.72 3 −5442.05 3 −5451.31
MS-data 3 −5836.07 2 −5843.55 2 −5850.59
S&P 500 2 −4491.72 2 −4497.99 2 −4504.99
NASDAQ 2 −5423.48 2 −5429.58 1 −5433.31
DJIA 3 −4319.39 2 −4328.97 2 −4335.77
NYSE 3 −4372.18 2 −4377.50 1 −4384.2

Note:MLL values are computed by bridge sampling. K +1 is the number of regimes.

series. Some results for the CP-GARCH and MS-GARCH models are
shown in Table 11. Not surprisingly, the selection varies according
to the choice of the prior. More precisely, Prior 1 sometimes over-
estimates the number of breaks, in particular it selects the wrong
model for the MS-GARCH data. Alternatively, for time series with
small evidence in favor of one specific model, Prior 3 selects the
model with the smallest number of parameters. Prior 2 gives in-
between results.We also observe that for the stock indices, theMS-
GARCH models find breaks irrespective of the prior and therefore
we find strong evidence of regime switches in at least two of the
four index series.

To complement Table 11 we give a more visual illustration of
the sensitivity of the MLL with respect to the prior. In particular,
we focus on Prior 1 since only the interval of ω penalizes the MLL
(the two other parameters, having a uniform prior on the unit in-
terval, do not modify the MLL). Moreover as any uniform density
cancels out in theMetropolis–Hastings acceptance probability, the
denominator of Eq. (7), i.e. the posterior distribution, is not modi-
fied if the selected prior interval is large enough. The alteration of
the MLL is then only due to the prior density. In order to show the
dependence of the MLL on the prior, we let the upper bound bω in-
crease from 10 to 1000 while keeping the lower bound aω fixed to
0. As can be seen in Figs. 3 and 4, the optimal number of regimes
may changewith respect to the size of the prior interval. Neverthe-
less, the values of the upper bound of the uniform prior of ω has to
be quite high (and unrealistic for the type data we analyze) for the
changes to occur. For example in the CP-GARCH case, the smallest
value is already 33 (NASDAQ) and it becomes even as large as 642
(DJIA). Thus this type of sensitivity is not a source of worry.

Finally, we study the effect of the prior on P in the same way as
for the GARCH parameters above. We change the hyperparameter
in Table 1 from 1110.11 to 500 and 1500. The corresponding
expected durations of staying in a given regime are respectively
501, 1111 and 1501 days. The results, not reported here, show for
all series very small differences (all smaller than one) in the log
marginal likelihood values over these priors, and this for both the
MS- and CP-GARCHmodels. The optimalmodels, as selected by the
highest marginal likelihood, stay the same.

4.5. Performance of the PMCMC sampler

In this subsection, we provide more details on the numerical
properties of our sampler. First, we compare the PMCMC sam-
pler that draws the states jointly with a sampler that draws states
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Fig. 3. CP-GARCH: model selection with respect to the upper bound bω .

individually. Second, we investigate autocorrelation times for dif-
ferent SMC algorithms. Finally, we show the quality of the approx-
imation that we use in the backward step of our algorithm.

4.5.1. Sampling states jointly versus individually
As mentioned in the introduction, the main alternative ap-

proach for a fixed number of regimes is the Gibbs sampling
algorithm proposed by Bauwens et al. (2010), denoted BPR
hereafter, for the MS-GARCH model. That algorithm samples the
state variables individually, whereas in our new algorithm, called
particle Gibbs sampler or particle MCMC (PMCMC), they are sam-
pled jointly. This makes substantial differences as we illustrate be-
low. For both the MS-GARCH and CP-GARCH) models, we compare
the PMCMC and BPR algorithms for drawing the state variables in
two ways. For the sake of a fair comparison, the BPR and PMCMC
algorithms differ only in the way the sampling of the states is im-
plemented.

First, we compute the autocorrelation time, i.e. the number of
draws from the MCMC to obtain one effectively new independent
draw from the posterior distribution, and defined as 1+ 2


∞

i=1 ρi
where ρi is the autocorrelation of order i between the posterior
draws. Table 12 reports for the BPR and PMCMC algorithms the
autocorrelation times for the optimal MS-GARCH and CP-GARCH
models estimated on the simulated CP-GARCH data and S&P500
data of Section 4. From this, it is clear that the PMCMC autocorre-
lation time is in each comparison drastically lower than the BPR
autocorrelation time.

As second comparison, we summarize in Table 13 the perfor-
mance of the samplers in terms of CPU time (in minutes) to ob-
tain one effectively new independent posterior draw. Related to
the CP-GARCH simulated data, we see that for all the CP-GARCH
models, both the PMCMC and the BPR algorithms have similar per-
formance. Hence, for a fixed number of breaks, the BPR algorithm
is sufficient for CP-GARCHmodels. However, BPR is unable to com-
pute themarginal likelihood. For theMS-GARCHmodels, the differ-
ence in performance is substantial. For example, for three regimes

Table 12
Autocorrelation times for the BPR and PMCMC algorithms.

Break CP-GARCH data
CP-GARCH MS-GARCH
BPR PMCMC BPR PMCMC

1 434.6325 1.0796 461.2361 1.5284
2 65.4907 1.1681 430.1539 1.4501

Break S&P 500 data
CP-GARCH MS-GARCH
BPR PMCMC BPR PMCMC

1 319.8695 1.5309 327.7704 1.2257
2 443.2646 1.6758 – –

Note: Autocorrelation time computed by batch means, see e.g. Geyer (1992). The
BPR and PMCMC algorithms differ only in the way the sampling of the states is
implemented (i.e. the block of the GARCH parameters is fixed).

Table 13
CPU time in minutes to obtain one effective posterior draw.

Regimes CP-GARCH simulated data
CP-GARCH MS-GARCH
PMCMC BPR PMCMC BPR

2 0.0208 0.0288 0.0391 17.2207
3 0.0257 0.0489 0.0661 30.5090
4 0.0768 0.0602 0.0723 39.5739

Regimes S&P500 data
CP-GARCH MS-GARCH
PMCMC BPR PMCMC BPR

2 0.0165 0.0413 0.0666 18.8514
3 0.0168 0.0455 0.0994 27.7195
4 0.0169 0.0540 – –

Note: Computation time in minutes per effective posterior draw.

the CPU times for PMCMC and BPR are respectively 0.0661 and
30.5090min. The conclusions related to the S&P500data in the sec-
ond panel of Table 13 are the same as for the simulated data.
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Fig. 4. MS-GARCH: model selection with respect to the upper bound bω .

4.5.2. Other SMC algorithms
The idea of Whiteley et al. (2011) of working with break dates

as parameters can lead to another algorithm in the context of the
CP-GARCH model considered in this paper. Consider the variable
∆T = {δ1, δ2, . . . , δT } with δt indicating the duration of the most
recent regime up to time t . We have the usual decomposition

p(∆T | YT ) = p(δT | YT )p(δT−1 | YT , δT ) . . . p(δ1 | YT , ∆2), (10)

of which the typical term is

p(δt | YT , ∆t+1)

=
f (Yt)p(δt | Yt)f (Y t+1

| Yt , ∆t)p(∆t+1
| δt)

p(YT , ∆t+1)
(11)

∝ p(δt | Yt)f (Y t+1
| Yt , ∆t)p(δt+1 | δt). (12)

The factor p(δt | Yt) can be computed with a forward step as
follows:

p(δt | Yt) ∝ f (yt | Yt−1, δt)


p(δt | δt−1)p(δt−1 | Yt−1) dδt−1. (13)

The advantage of working with durations δt instead of the state
vector is that Eq. (12) does not need to be evaluated at each t , but
only for δt+1 = 1. This computational advantage allows one to
evaluate exactly f (Y t+1

| Yt , ∆t) for small N and small number of
regimes. On the other hand, the support of δt , i.e. (1, 2, . . . , t − 1),
implies using more particles compared to working with the states
st where the support is only (1, . . . , K + 1).

As an illustration, we implement this ‘‘duration’’ algorithm for
the simulated CP-GARCH data and for the S&P500 data of Section 4.
For completeness, we also adapt the particle Metropolis–Hastings
(PMH) and the ADH particle Gibbs (PGibbs) algorithms of Andrieu
et al. (2010) for the CP-GARCH models. The latter two algorithms
have no backward step. Table 14 displays the autocorrelation times
for the PMH, PGibbs and the ‘‘duration’’ algorithms for 150 and
1000 particles, andwhere only the states are sampled. For the sake
of comparison, we also add our PMCMC algorithm. We see clearly

Table 14
Autocorrelation times for different SMC algorithms.

Break/N CP-GARCH simulated data
PMH PGibbs Duration PMCMC
150 1000 150 1000 150 1000 150 1000

1 5.70 3.72 53.12 2.34 7.15 2.36 1.08 1.09
2 3.61 1.66 8.39 1.72 8.73 1.94 1.25 1.17

Break/N S&P500 data
PMH PGibbs Duration PMCMC
150 1000 150 1000 150 1000 150 1000

1 3.61 1.47 46.53 1.36 4.32 2.54 1.06 0.81
2 1.13 1.30 4.01 2.59 5.70 2.78 1.03 1.45

Note: Auto-correlation times using the simulated CP-GARCH data and the S&P500
data.

that using 150 particles for these algorithms result in draws which
are more persistent, especially so for the PGibbs algorithm. When
the number of particles is increased to 1000, all the algorithms
perform quite similarly.

Note that the performance of the different algorithms depends
on the resampling procedure (multinomial, stratified, etc.). More-
over, as mentioned by P. Fearnhead in the discussion of Andrieu
et al. (2010), the mixing properties of the algorithm can be im-
proved by decreasing the number of resampling steps in the con-
ditional SMC procedure. In our comparisons of the algorithms, we
have used identical resampling steps so that the algorithms only
differ in the way the states are drawn.

4.5.3. Quality of the approximation

We explain in Section 2.1 that λ
sit
t has to be approximated for

computational reasons. The accuracy of this approximation is illus-
trated here for the S&P500 data, though results for the other series

are very similar. Fig. 5 presents the average of 100 draws of λ
bkt
st

for the true values and the approximate values. The correspond-
ing computing time to obtain the 100 draws is 500 and 0.6 min,
respectively. The approximation is visually accurate.



14 L. Bauwens et al. / Journal of Econometrics ( ) –

0 1500 2000500 2500 30001000

1

0.8

0.6

0.4

0.2

0
0 1500 2000500 2500 30001000

1

0.8

0.6

0.4

0.2

0

(a) CP-GARCH model: True. (b) MS-GARCH model: True.

0 1500 2000500 2500 30001000

1

0.8

0.6

0.4

0.2

0
0 1500 2000500 2500 30001000

1

0.8

0.6

0.4

0.2

0

(c) CP-GARCH model: Approximation. (d) MS-GARCH model: Approximation.

Fig. 5. S&P500 data: λbkt
st represents the probability of being in state st . The state indicator st takes values {1, 2} for the MS-GARCH and {1, 2, 3} for the CP-GARCH.

5. Conclusion

MS- and CP-GARCH models are flexible alternatives to GARCH
models with fixed parameters. We estimate them by Bayesian in-
ference using data augmentation because of the path dependence
problem. We choose the number of regimes or breaks by comput-
ing themarginal likelihood.We introduce an efficientmethod to do
this, which was not feasible until our contribution, due to the chal-
lenge posed by suchmodels in integrating the latent state variables
that govern the parameter evolution between regimes. The algo-
rithm belongs to the particle filter class and is intensive in compu-
tations but feasible as we are able to use a reasonable number of
particles, due to the discrete nature of the state variables, and the
fact that we do not use particles for the parameters of the volatil-
ity processes and of the transition matrix. We have illustrated the
use of the method on several time series of financial returns, for
which it seems that CP-GARCH and especially MS-GARCH mod-
els are useful for capturing changes in the dynamics and level of
volatilities. Further research will be centered on forecast compar-
isons with these and competing models, the very general infinite
mixture model of Griffin and Steel (2011) in particular, and us-
ing the same framework for multivariate volatility models. Fur-
thermore, other empirically relevant issues related to the optimal
number of regimes are first the effect of relaxing theGaussian inno-
vation assumption, and second the impact ofmore complex volatil-
ity functions than the standard GARCH specification.
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Appendix. Sampling the conditional variance parameters

This appendix describes the sampling of θ in the Gibbs sam-
pler of Section 2. We implement a Metropolis–Hastings step that
samples from a mixture of five normally distributed components.
The mixture is adapted during the burn-in period. The expec-
tation and the variance–covariance matrix of the first compo-
nent are computed using burn-in draws. This component behaves
as an independent Metropolis–Hastings. For the other compo-
nents we only specify the variance–covariance matrix. Besides
the second component, variance–covariance matrixes only differ
from a scaling parameter. The expectation is given by the cur-
rent parameter of the Particle Gibbs as in a standard random-walk
Metropolis–Hastings. The weights are given in Table 15 where µ
and Σ respectively stand for the posterior mean and the posterior
variance–covariance matrix estimated using available draws, I de-
notes the identity matrix and θcur is the current parameter of the
particle Gibbs.

In the case of a MS-GARCH model, one can switch the la-
bel of the states without changing the likelihood. A way to deal
with this problem is to use identification constraints. However,
this is difficult to implement in a high dimensional parameter
space and may generate a bias in the estimation of the posterior
means, see Geweke (2007) for examples. Instead,we run an uncon-
strained sampler and apply a loss function on the posterior sample
by considering all possible permutations. We minimize this loss
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Table 15
Mixture weights of the proposal distribution.

Mixt. comp. Weight Distribution

1 0.05 N(µ, 0.01Σ)

2 0.15 N(θcur , 0.5I)
3 0.15 N(θcur , 0.05Σ)

4 0.55 N(θcur , 0.1Σ)

5 0.10 N(θcur , Σ)

function on the posterior sample which leads to the best permu-
tation. The following idea of Marin et al. (2005) has been imple-
mented: τ ∈ Σk stands for a possible permutation on the set of
all possible permutations of {1, . . . , k} and we denote by τ(θ, P,
ST ) = {(θτ(1), . . . , θτ(k)), (Pτ(1), . . . , Pτ(k)), (STτ(1), . . . , STτ(k))} the
corresponding permutation of the parameters (θ, P, ST ). Consider-
ing a posterior sample of sizeM , we apply the following scheme:

1. Find (θ, P, ST )i∗ = arg maxi=1,...,M f (YT |θ
i, P i, S iT )

2. ∀i ∈ {1, . . . ,M}

(a) Compute τi = arg minτ∈Σk


τ(θ, P, ST )i, (θ, P, ST )i∗


where

⟨.⟩ stands for the canonical scalar product.
(b) Set (θ, P, ST )i = τi(θ, P, ST ).
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