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Exercise 1
This exercise illustrates the methods of deterministic integration, im-
portance sampling, and the Metropolis-Hastings algorithm for Bayesian
inference on a scalar parameter.

Consider the independent Student sampling process, for i = 1, . . . , n:
yi|µ ∼ I.t(µ, ν−2, 1, 5), a Student distribution such that E(yi) = µ and Var(yi) = 1
(for simplicity, we assume ν known and > 2). Write a computer program that:

1. generates a sample of this process (inputs to choose are n, µ, and ν) (see Ap-
pendix B of Bauwens, Lubrano and Richard (1999) (BLR) for an algorithm
to simulate the Student distribution);1

2. computes the ML estimator of µ and its asymptotic standard error (use a
library for optimization, such as Maxlik in GAUSS);

3. computes and plots (on the same graph) the posterior densities of µ corre-
sponding to the sampled data and to two prior densities:
-diffuse,
-N(µ0, 1/n0) (inputs to choose are µ0 and n0);
NB: To define your prior, you have to choose values of µ0 and n0. You can
pick arbitrary values and repeat the exercise by changing them to see how
they influence the posterior results. An easy way to select µ0 and n0 is to
sample n0 initial observations from the DGP and to set µ0 at the mean of
this sample.

4. computes the posterior mean and variance of µ;

5. plots the Student and normal prior densities on the same plot as the corre-
sponding posterior densities.

Use the following methods for doing the computations needed for 3-4-5 above:

DI: Deterministic integration using the trapezoidal or Simpson’s rule to compute
the posterior moments and the normalizing constant of the posterior of µ
for each prior; you must normalize the posterior, i.e. it must integrate to 1,
to plot it on the same graph as the other densities.

IS: Importance sampling to compute the posterior moments and marginal den-
sity of µ for each prior. Explain how you choose the importance function in
each case. Compute the probabilistic relative error bound of the estimate of
the normalizing constant of the posterior and of the estimate of the posterior
expectation of µ (see formula 3.34 in BLR).

1A GAUSS code is available at http://perso.uclouvain.be/luc.bauwens/Bayes/bayesian.htm
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MH: the independent MH algorithm to compute the posterior moments and marginal
density of µ for each prior. As candidate density, use the importance function
you have defined for the IS computations here above. Estimate the rejection
probability of the MH sampler by the empirical rejection frequency. Com-
pute the numerical standard error of the posterior mean. Plot the ACF and
CUMSUM of the draws and assess the dependence in the generated sample.
Apply Geweke’s test.

Exercise 2
This exercise illustrates the method of direct sampling with a simple
example.

Assume that θ is a parameter in R2 with as posterior distribution a N2(µ,Σ)
density (see p 48 of the slides). Write a computer program that has as inputs µ,
Σ, intervals bounds for θ1 and θ2 (see NB below), n and

1. simulates n random draws from the bivariate normal distribution defined
above;

2. estimates (in the frequentist sense) µ, Σ, Pr(θ1 ∈ A1), and Pr(θ ∈ A) from
the draws, and plots these estimates against increasing values of n together
with the limits of 95 per cent confidence intervals for them. Take for example
n = 10000 and plot the estimates for smaller values of n (but use always the
same sample, i.e. for n = 100, base the estimates on the first 100 values of
the sample of size 10 000).

3. estimates the mean of θ1/θ2 (; you should see that it is unstable as n changes,
reflecting that the expected value does not exist. Estimate also the median
of θ1/θ2. Is it more stable?

NB: Choose for example µ = (1 − 1)′, and Σ =





0.25 0.2

0.2 0.64



, and intervals

A1 = (0.5, 1.2) for θ1 and A2 = (−1.5, 0) for θ2. Define the set A as the Cartesian
product of A1 and A2).

Exercise 3
This exercise illustrates the Gibbs sampler with a simple example.

Assume that θ is a parameter in R2 with as posterior distribution a N2(0,Σ)
where Σ is a correlation matrix with ρ as the off-diagonal element. Write a com-
puter program that has as inputs ρ, n0, n and

1. simulates n0 + n random draws of θ from the bivariate normal distribution
defined above, by a Gibbs sampling algorithm that cycles between θ1|θ2 and
θ2|θ1;

2. estimates from the last n draws the two means, the two variances and the
correlation coefficient from the Gibbs sample;
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3. plots the ACF and CUMSUM of the draws of θ1 and of θ2 and assess the
dependence in each of them;

4. computes the numerical standard error of each estimated posterior mean;

5. applies Geweke’s test to the draws of θ1 and of θ2;

6. estimate and plots each marginal density using the simulated sample by a
kernel method if you know one (otherwise plot a smoothed histogram). Do
the same, if you can, for the joint bivariate density.

7. (optionally) does also the computations using Rao-Blackwellisation.

NB: you should execute the program varying
- the initial condition and the length of the warm-up sample (n0) to assess how
they influence (or not) the results (for a given value of ρ);
- the value of ρ (try 0, 0.50, 0.90 and 0.99) to assess the influence of the correlation
coefficient between θ1 and θ2 on the performance of the Gibbs sampler for a given
value of n0 and n (see p 83 of the slides).

3


