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Really?

"The Bayesian approach to econometrics is
conceptually simple and, following recent developments
computationally straightforward."

Tony Lancaster (2004)

An Introduction to Modern Bayesian Econometrics.
Balckwell, page 58.
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Bayesian inference

An approach to statistical inference on model
parameters, quite different from classical methods (like
ML, GMM, ...).

The differences concern:

1-the treatment of parameters of models (random
variables versus fixed constants);

2-the criteria for evaluating statistical procedures of
estimation and hypothesis testing (conditional only on
observed data versus in terms of sampling properties);

3-the interpretation of probability (subjective versus
objective ).
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Principle of Bayesian inference

Bayesian inference formally treats the unknown
parameters of a model as random variables.

The state of knowledge about the parameters may be
represented through a probability distribution, the prior
distribution (‘prior’ to observing data).

Data supposed to be generated by the model provide
information about the parameters. The data information
is available through the data density that is the likelihood
function when considered as a function of the
parameters.

Prior information and data-based information are
combined through Bayes theorem and provide a
posterior distribution.
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Bayes theorem

Formally, Bayes theorem (data y ∈ S and parameters
θ ∈ Θ) provides the posterior density (assuming θ is
continuous) from the prior density ϕ(θ) and the data
density f(y|θ):

ϕ(θ|y) =
ϕ(θ)f(y|θ)

f(y)
.

f(y) is the marginal density of y, also called predictive
density:

f(y) =

∫

ϕ(θ)f(y|θ)dθ.
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Sequential sampling

Bayes theorem provides a coherent learning process:
from prior to posterior.

Learning may be progressive. Suppose that y1 is a first
sample and y2 a second one, i.e. y1 ∼ f(y1|θ) and
y2 ∼ f(y2|y1, θ).

The posterior after observing the first sample is

ϕ(θ|y1) =
ϕ(θ)f(y1|θ)

f(y1)
.

where f(y1) =
∫

ϕ(θ)f(y1|θ)dθ. This posterior serves as
the prior for using the second sample.
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Sequential sampling

The updated posterior based on y2 is

ϕ(θ|y2, y1) =
ϕ(θ|y1)f(y2|y1, θ)

f(y2|y1)
=

ϕ(θ)f(y1|θ)f(y2|y1, θ)

f(y1)f(y2|y1)

where f(y2|y1) =
∫

ϕ(θ|y1)f(y2|y1, θ)dθ.

This posterior is the same as the one obtained by
applying Bayes theorem to the joint sample y = (y1, y2)

since

- f(y|θ) = f(y1|θ)f(y2|y1, θ)

- f(y) = f(y1)f(y2|y1).
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Modelling using Bayesian inference

Paraphrasing Lancaster (1, p 9), modelling the Bayesian
way may be described in steps:

1. Formulate your economic model as a family of
probability distributions f(y|X, θ) for observable random
variables y and X (exogenous variables).

2. Organize your prior beliefs about θ into a prior.

3. Collect the data for y and X, compute and report the
posterior.

4. Evaluate your model and revise it if necessary.

5. Use the model for the purposes for which it has been
designed (scientific reporting, evaluating a theory,
prediction, decision making...).
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Summarizing the posterior

Features of the posterior that should be reported are:

Posterior means and standard deviations. This is a
minimum.

The posterior variance-covariance matrix (or the
corresponding correlation matrix).

Graphs and quantiles of univariate marginal densities of
elements of θ that are of particular interest. Skewness
and kurtosis coefficients, and the mode(s) if the marginal
densities are clearly non-Gaussian.

Contours of bivariate marginal densities of pairs of
elements of θ that are of particular interest.
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Simple example

Sampling process: let y = (y1, . . . , yn) where
yi|µ ∼ I.N(µ, 1) for µ ∈ R. The data density is:
f(y|µ) = (2π)−n/2 exp[−0.5

∑n
i=1(yi − µ)2].

Prior density: µ ∼ N(µ0, n
−1
0 ), where µ0 ∈ R and n0 > 0

are constants chosen to represent prior information: µo

is a prior idea about the most likely value of µ and n0

sets the precision (=inverse of variance).

⇒ Posterior density: µ|y ∼ N(µ∗, n−1
∗ ) where n∗ = n + n0

and µ∗ = nȳ+n0µ0

n+n0
.

How do we find that the posterior is normal with
expectation µ∗ and variance 1/n∗?
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Apply Bayes theorem

By Bayes theorem: ϕ(µ|y) ∝ ϕ(µ)f(y|µ).
∝ means ‘proportional to’: here we ‘forget’ 1/f(y)

because it is a proportionality constant that does not
depend on µ. We can do the same in the prior and the
data density:

ϕ(µ|y) ∝ exp[−0.5n0(µ − µ0)
2] exp[−0.5n(µ − ȳ)2].

The question to ask at this stage is always: is this a form
of density in a known class?

-If YES: exploit the properties of this class, to get the
posterior features you want.

-If NO: use numerical integration to compute the
posterior features.
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Calculus

∑n
i=1(yi − µ)2 = n(µ − ȳ)2 +

∑n
i=1(yi − ȳ)2.

Add the arguments of the 2 exp functions:

n0(µ − µ0)
2 + n(µ − ȳ)2

= n0(µ
2 − 2µ0µ + µ2

0) + n(µ2 − 2ȳµ + ȳ2)

= (n0 + n)µ2 − 2(n0µ0 + nȳ)µ + (n0µ
2
0 + nȳ2)

= Aµ2 − 2Bµ + C

= A(µ − B
A )2 + C − B2

A

⇒ ϕ(µ|y) ∝ exp[−0.5A(µ − B
A )2] = exp[−0.5n∗(µ − µ∗)2]

Apart from a proportionality constant, this is the normal
density N(µ∗, n−1

∗ ).
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Comments

If n → ∞, E(µ|y) → ȳ, Var(µ|y) → 0, and ϕ(µ|y) → 1l {µ=ȳ} (all
mass on ȳ).

If n0 = 0, the prior variance is infinite. The prior density
has no weight, it is said to be diffuse, or non-informative,
or flat. The posterior is then µ|y ∼ N(ȳ, 1/n).
Contrast with sampling distribution of the sample mean:
ȳ ∼ N(µ, 1/n).

The prior N(µ0, n
−1
0 ) can be interpreted as the posterior

obtained from a first sample of the same DGP, of size n0,
with sample mean µ0, combined with a non-informative
prior ϕ(µ) ∝ 1. This prior is not a ‘proper’ (i.e. integrable)
density, but the posterior is proper as long as n0 ≥ 1.
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Density kernels

When we write ϕ(µ|y) ∝ exp[−0.5n∗(µ − µ∗)2] the function
on the right hand side is called a kernel of the posterior
density of µ.

Similarly exp[−0.5n0(µ − µ0)
2] is a kernel of the prior

density of µ.

And exp[−0.5n(µ − ȳ)2] is a kernel of the data density.
Since this density is conditional on µ no factor depending
on µ should be forgotten when we drop constants,
otherwise we shall make a mistake in computing the
posterior! For example, if we assume yi|µ, σ2 ∼ I.N(µ, σ2),
the relevant kernel is σ−n exp[−0.5σ−2

∑n
i=1(yi − µ)2].
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Less simple example

Suppose we change the sampling process to
yi|µ ∼ I.t(µ, ν − 2, 1, ν), a Student distribution such that
E(yi) = µ and Var(yi) = 1 (for simplicity, we assume ν

known and > 2),

Or we change the prior density to µ ∼ t(µ0, 3, n0, 5) such
that E(µ) = µ0 and Var(µ) = 1/n0:

In both cases, we can write easily the posterior density
but it does not belong to a known class and we do not
know its moments analytically!
Note that the ML estimator is not known analytically for
the independent t sampling process.
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Univariate t (Student) distribution

A random variable X ∈ IR has a Student (or t) distribution
with parameters ν > 0 (degrees of freedom, µ ∈ R,) m > 0

and s > 0, i.e. X ∼ t(µ, s,m, ν), if its density function is
given by

ft(x|µ, s,m, ν) =
Γ(ν+1

2 )

Γ(ν
2 )π

1

2

s
1

2
νm

1

2 [s + m (x − µ)2]−
1

2
(ν+1).

Its mean and variance are

E(X) = µ if ν > 1, Var(X) =
s

ν − 2
m−1 if ν > 2.

Usual Student quantile tables are for t(0, ν, 1, ν) (variance
is not 1).
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Treatment of parameters

Classical methods treat the parameters as fixed
unknown constants.

When treating the parameters as random variables, a
Bayesian does not believe necessarily that this is
reflecting how reality functions, i.e. that θ is randomly
drawn from a distribution, and that given this drawn θ, y

is drawn from f(y|θ).
A more common interpretation is that since θ is an
unknown constant, it is possible to make (subjective)
probability statements on likely values of θ, resulting in a
probability density for θ.
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Criteria for statistical procedures

Classical statistical procedures are evaluated on their
merits in terms of consistency, lack of bias, efficiency...
i.e. their properties in hypothetically repeated or large
samples.

Bayesian inference does not care about such properties:
it is conditional on the observed sample. All that counts
is to use available information ‘coherently’, and not
information that might be available but will never be.

Some Bayesians misleadingly state that Bayesian
inference is therefore ‘exact’ in finite samples. This has
no meaning since what happens in repeated samples is
not relevant for Bayesian inference.
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Criteria for statistical procedures

One may study the sampling properties of any feature of
the posterior density, like the expected value, the
variance, quantiles...

Indeed such features are functions of the data and
therefore are ‘statistics’ whose properties depend on the
DGP. For example, the posterior mean E(θ|y) may be
considered as an estimator of θ.

However, it should not be forgotten that such quantities
are ALSO, in principle, depending on the prior!
Therefore, comparing the sampling properties of a
classical estimator and of the posterior mean should
account for the possible prior information embedded in
the latter.
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Loss function for point estimation

An estimator (in the classical sense) is a function of the
data (a statistic). It depends on the parameter through
the DGP.

Let l(a, θ) ≥ 0 be a function measuring the loss of
choosing the estimator a = a(y) of the parameter when
the value of the parameter is θ. The loss is minimal when
a = θ, otherwise it is positive.

Examples (for scalar θ) are (for c1, c2 > 0):
-quadratic loss: l(a, θ) = c1(a − θ)2;
-piecewise linear loss (asymmetric if c1 6= c2):

l(a, θ) =

{

c1(a − θ) if a ≥ θ

c2(θ − a) if a < θ.
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Bayes point estimators

A ‘Bayes point estimator’ is a function that minimizes the
posterior expected loss:

θ∗ = arg min
a∈Θ

E[l(a, θ)|y],

where E[l(a, θ)|y] =
∫

l(a, θ)ϕ(θ|y)dθ.

Solving this problem for the quadratic loss function yields
the posterior mean: θ∗ = E(θ|y).

The solution for the piecewise linear loss function is the
c1/(c1 + c2)-quantile of the posterior density. In particular,
if c1 = c2, this is the posterior median.
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Probability: objective or subjective?

Kolmogorov’s axiomatic definition of probability is
compatible with different interpretations:

Objective (or empirical): probability as the limit of
empirical frequency. It can only apply to events that can
be reproduced. There would be no sense to claim that
"the return to education coefficient is between 0.04 and
0.08 with probability 0.9".

Logical: probability is a degree of belief about a
proposition, it stems from a logical relation between a
proposition and a corpus of knowledge. Consensus
regarding this logical link produces a unique system of
probabilities.
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Probability: objective or subjective?

Subjective: probability still represents a degree of belief
about a proposition but it is no longer based on a
universal logical system. It is personal and thus can vary
from person to person.

Bayesian inference, to the extent that it rests on the need
to define probabilities on non reproducible events, is
hard to reconcile with the empirical interpretation of
probability. But there is no need to be a ‘hard core
dogmatic subjectivist’ to use Bayesian inference!
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Skills for Bayesian inference

Bayesian inference requires a good knowledge

of probability distribution theory: it helps to formulate
prior distributions, to analyze posterior distributions, and
of course to define sensible econometric models (as in
classical inference);
Appendix A of BLR contains a lot of information on this
aspect;

of numerical integration techniques (Ch. 3 of BLR):
essential for computing summary features of posterior
distributions. Analytical results on posterior densities are
limited. This is the counterpart of numerical optimization
in classical econometrics.
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Main Reference

Our main reference is "BLR" which stands for
Bauwens L., Lubrano, M. and Richard J-F. (1999),
Bayesian Inference for Dynamic Econometric Models.
Oxford University Press.

For this first chapter, see in particular sections
-1.4, about interpretations of probability;
-1.5, about Bayes’ Theorem;
-1.8, about statistical decisional framework and
optimality of Bayesian inference rules;
-1.9, about estimation;
-1.10, about hypothesis testing;
-2.3 about kernels.
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Other books

Geweke (2005) Contemporary Bayesian Econometrics
and Statistics (Wiley), is a relatively advanced textbook.

Greenberg (2008), Introduction to Bayesian
Econometrics (Cambridge University Press), is a
concise introductory textbook.

Koop (2003), Bayesian Econometrics (Wiley).

Koop, Poirier and Tobias (2007), Bayesian Econometric
Methods (Econometric Exercises 7, Cambridge
University Press).
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Complementary readings

Lancaster (2004, Ch. 1) provides a useful synthetic
overview of Bayesian inference, including several
examples. A topic not covered in BLR is what happens
to posterior distributions when the sample size tends to
infinity (but see the simple example above, p 12-15).

Zellner (1971), An Introduction to Bayesian Inference in
Econometrics (Wiley) is the first ever published book on
Bayesian econometrics. It has a quite interesting
chapter (Ch. 2) on the principles and foundations.

The Oxford Handbook of Bayesian Econometrics (2011)
contains chapters on principles, methods, and
applications to macroeconomics, microeconomics,
marketing, and finance.
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CHAPTER 2

2.1 Need for numerical integration

2.2 Deterministic integration

2.3 Monte Carlo integration

Remark: numerical integration may be useful in classical
econometrics also. For some models, the likelihood
function or the moment conditions can only expressed
as an integral, sometimes of high dimension (like the
sample size). This is often the case in models involving
latent variables. Examples are the stochastic volatility
model, and dynamic discrete choice models.
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Bayes theorem using kernels

ϕ(θ|y) =
ϕ(θ)f(y|θ)

f(y)

∝ ϕ(θ)f(y|θ)
∝ κ(θ)k(θ; y) = κ(θ|y).

where

- κ(θ) is a kernel of the prior, i.e. ϕ(θ) ∝ κ(θ),
- k(θ; y) is a kernel of the likelihood function
l(θ; y) = f(y|θ), i.e. k(θ; y)/l(θ; y) must be constant with
respect to θ. It is also a good idea to keep in k(θ; y) all factors
depending on y (see next slide);
- κ(θ|y) is a kernel of the posterior.
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Need for numerical integration 1

Case 1: when we don’t know the density corresponding
to κ(θ|y), we don’t know analytically the constant K(y)

such that ϕ(θ|y) = κ(θ|y)/K(y) is a properly normalized
density, i.e. such that

∫
ϕ(θ|y)dθ = 1.

Obviously, K(y) =
∫

κ(θ|y)dθ =
∫

κ(θ)k(θ; y)dθ.
Note that f(y) ∝ K(y) if we include in k(θ; y) all factors
depending on y.

Still in case 1, we don’t know analytically posterior
moments. The posterior expectation of an integrable
function g(θ) is defined as:

E[g(θ)|y] =

∫

g(θ)ϕ(θ|y)dθ
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Need for numerical integration

E[g(θ)|y] =

∫

g(θ)ϕ(θ|y)dθ

and must be computed as:

E[g(θ)|y)] =

∫
g(θ)κ(θ)k(θ; y)dθ
∫

κ(θ)k(θ; y)dθ
.

Notice that the denominator is a particular case of the
numerator, when g(θ) = 1. Therefore we need to compute
integrals of the type

∫

g(θ)κ(θ)k(θ; y)dθ

for several functions g(.), depending on what posterior
results we want to report.
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Functions and their expectations

g(θ) E[g(θ)|y]

θ posterior mean
θθ′ matrix of uncentered second order moments
1θ∈A posterior probability of event A

f(y∗h|θ, y) predictive density of yh at value y∗h
E(yh|θ, y) predictive mean of yh

The posterior variance-covariance matrix is computed as
E(θθ′|y) − E(θ|y)E(θ′|y).
Note that E(yh|y) =

∫
E(yh|θ, y)ϕ(θ|y)dθ (law of iterated

expectations). Likewise,
f(y∗h|y) =

∫
f(y∗h|θ, y)ϕ(θ|y)dθ.
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Marginal densities

By defining the set A appropriately, and computing
E(1θ∈A) = Pr(θ ∈ A), one can approximate the ordinates of
the marginal density of any element of θ. Suppose θ is
scalar and A = (a, b), with b − a small. Then

∫ b

a
ϕ(θ|y)dθ = Pr(θ ∈ A) ≃ ϕ

(a + b

2
|y
)

(b − a)

This should be done for a fine grid of abscissae of θ where
the marginal posterior has its mass.
The procedure can be extended to compute the marginal
posterior of two parameters by defining A as a small
rectangle.
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Need for numerical integration 2

Case 2: even if we know the normalizing constant,
moments, and marginal densities of ϕ(θ|y), we may not
know analytically the posterior density or the moments of
some functions g.

Example 1: suppose θ|y ∼ N2(θ∗, V∗) but we want to
compute the posterior density of θ1/θ2. Note however
that this particular function does not have a finite mean,
but it has a density which can be computed from the joint
density of θ.

Example 2: the roots of the determinantal equation of a
VAR model are highly non-linear functions of the
parameters.
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Deterministic integration

Useful and easy for computing an integral of dimension
1 or 2. Let θ be a scalar.

Let I =
∫ 1
0 h(θ)dθ be the integral to compute. Typically,

h(θ) = g(θ)κ(θ|y).

The limits of integration are in general not 0 and 1 but it
is always possible to make a change of variable to
express the problem as above. For example:
∫ b
a h(θ)dθ = (b − a)

∫ 1
0 h[(b − a)τ + a]dτ .

When a is −∞ and/or b is ∞, another transformation
must be used. For example τ = 1/(1 + exp(−θ)) ∈ (0, 1) if
θ ∈ (−∞,∞).
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Trapezoidal rule

Approximate h(θ) by a linear function through the
endpoints and deliver the area of the trapezium as the

integral: I =
∫ 1
0 h(θ) dθ ≃ h(0) + h(1)

2
.

In practice: split (0, 1) into 2n intervals of equal length
based on the points θ0(= 0), θ1, . . . , θ2n(= 1), apply the rule
to each interval and add the pieces:

I ≃ 1

4n
[h(θ0) + 2h(θ1) + 2h(θ2) + · · · + 2h(θ2n−1) + h(θ2n)]

The error is proportional to (2n + 1)−2. Use n = 100 at
least.
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Simpson’s rule

Approximate h(θ) by a quadratic function through
h(0), h(0.5), h(1) and deliver the area under the quadratic
function as the integral: I ≃ [h(0) + 4h(0.5) + h(1)]/6.

Using 2n + 1 equally spaced points:

I ≃ 1

6n
[h(θ0) + 4h(θ1) + 2h(θ2) + 4h(θ3) + 2h(θ4)

+ · · · + 2h(θ2n−2) + 4h(θ2n−1) + h(θ2n)]

The error is proportional to (2n + 1)−4. Use n = 8 at least.
For given n, Simpson’s rule should be more precise than
trapezoidal rule. Use Simpson’s rule if function
evaluation is costly.
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Chapter 2, Section 2.3

2.1 Need for numerical integration

2.2 Deterministic integration

2.3 Monte Carlo integration
2.3.1 Definition
2.3.2 Independent sampling
2.3.3 Dependent sampling
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Monte Carlo integration

Useful, but not always easy, for computing an integral of
dimension ≥ 3. Can also be used for smaller dimensions
but deterministic rules are more efficient.

Deterministic rules cannot be used for a large
dimension: for a dimension of k and with a grid of G

points for each coordinate, we need Gk function
evaluations: e.g. 209 × 10−6 implies 6 days of computing;
for k = 10, it becomes 118 days! And the programming
would not be easy.

Monte Carlo integration uses much less points but
chooses them where they are most useful, i.e. where the
integrand varies a lot.
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Principle of Monte Carlo integration

The general principle of a Monte Carlo method is:
(i) to express the solution of a problem as a parameter of
a hypothetical population,
(ii) to use random numbers to build a (dependent or
independent) sample of the population, and
(iii) to estimate the parameter of the population using the
generated sample.

See Appendix B of BLR for random number generation
from many probability distributions.

Ironically, estimation is done in the classical (i.e.
non-Bayesian) sense, and justified by the consistency of
the estimator for the parameter value...
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Simple example

Let θ ∼ N2(µ,Σ) be a posterior density.

We want to compute Pr(θ ∈ A), and the median and
density of θ1/θ2.

Let {θ(i)}n
i=1 be an I.I.D. simulated sample from the

posterior. See p 319 of BLR for an algorithm to generate
from a multivariate normal, and p 317 for a N(0, 1).

We estimate Pr(θ ∈ A) by the proportion of simulated
θ(i) ∈ A.

With the sampled value, we can approximate the density
of θ1/θ2 by a kernel method. The median is estimated by
the sample median.
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Chapter 2, Section 2.3

2.3 Monte Carlo integration
2.3.1 Definition
2.3.2 Independent sampling
Direct sampling
Importance Sampling
Rejection sampling
2.3.3 Dependent sampling
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Direct sampling

Hypothetical population: θ ∼ ϕ(θ)

Let {θ(i)}n
i=1 be an I.I.D. simulated sample of that

population.

gD =
∑n

i=1 g(θ(i))/n is unbiased and consistent for
µg ≡ E[g(θ)].

n1/2(gD − µg)
a∼ N(0, σ2

g), where σ2
g < ∞ is the population

variance of g(θ). Hence, with probability 1 − α,
|gD

µg
− 1| < zα

σg

µg

1√
n

(zα is the quantile such that

Pr(|Z| < zα) = 1 − α, Z being standard normal).

gD ± zα(sg/
√

n) is an estimated confidence interval of
level 1 − α, where sg is the sample standard deviation of
g(θ).
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Importance sampling (IS)

With a posterior in an unknown class, direct sampling is
not applicable because we cannot sample directly from
the posterior.

Importance sampling changes the hypothetical
population ϕ(θ) by another population ι(θ) (called
importance function or density) wherefrom an I.I.D.
sample can be generated and computes the expectation
as a parameter of the new population. We wish to
compute

µg = Eϕ[g(θ|y)].

Note that:
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Fundamental IS equality

µg = Eϕ[g(θ|y)] =

∫

g(θ)ϕ(θ|y)dθ =

∫
g(θ)κ(θ|y)dθ
∫

κ(θ|y)dθ

∫

g(θ)κ(θ|y)dθ =

∫

g(θ)
κ(θ|y)

ι(θ)
ι(θ)dθ

= Eι[g(θ)
κ(θ|y)

ι(θ)
] = Eι[g(θ)w(θ)]

∫
κ(θ|y) = Eι[w(θ)]

⇒ µg =
Eι[g(θ)w(θ)]

Eι[w(θ)]
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IS graph
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Estimation

Let {θ(i)}n
i=1 be an I.I.D. sample of ι(θ).

µg is estimated by

gI =
1
n

∑n
i=1 g(θ(i)) w(θ(i))

1
n

∑n
i=1 w(θ(i))

=
n∑

i=1

ω(i) g(θ(i))

where ω(i) = w(θ(i))/
∑n

j=1 w(θ(j)).

Expectations are computed as weighted averages of the
incorrect sample but the sampled values are weighted in
order to get a consistent estimator.

w(θ) = κ(θ|y)
ι(θ) is called the weight function.
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Properties of gI

Note that gI is a ratio of unbiased and consistent
estimators (for the numerator and denominator) but is
not unbiased for µg (because of the ratio). However it is
consistent.

Under regularity conditions, n1/2(gI − µg)
a∼ N(0, τ2

g ),

where τ2
g < ∞ is the asymptotic variance of gI .

For scalar θ and g(θ) = θ, BLR (p 77-78) show how to
estimate consistently τ2

g .

Using this, the probabilistic bound on the error | gI

µg
− 1|,

and a confidence interval for µg can be estimated as in
the case of direct sampling.
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How to chooseι(θ)?

For w̄n = 1
n

∑n
i=1 w(θ(i)) to be consistent for Eι[w(θ)], the

latter should be finite. And the smaller the variance of
w(θ), the more precise w̄n.

Obviously, if ι(θ) ∝ κ(θ), w(θ) is a finite constant hence
has zero variance. In this case we would be sampling
from ϕ(θ) and back to the case of direct sampling.

Fundamental guideline: choose ι(θ) as close as possible
to κ(θ) and such that w(θ) < ∞.

If ι(θ) provides a good approximation to
∫

κ(θ|y)dθ

= Eι[w(θ)], it will also provide a good approximation to
Eι[g(θ)w(θ)] and even a better one to µg (see BLR, p 79).
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Useful information
One should use as much as possible the information one
has about the posterior density in order to build an
importance function (I.F.). The type of information that may
be available is theoretical (Ti) or empirical (Ei):

T1: conditions on the existence of moments;

T2: existence of one or several modes;

T3: characterization of some conditional densities of ϕ

including their moments;

E1: mode and Hessian of log(ϕ) evaluated at the posterior
mode (by numerical optimization);

E2: a first approximation of the moments of ϕ (by Laplace’s
method, or a normal approximation, or a first round of
importance sampling).
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General hints onι

Select ι so that it matches the location, covariance structure,
and tail behaviour of ϕ.

1. Location: ι should have the same mode(s) as ϕ (using
T2, and E1 or E2).

2. An approximation to the covariance matrix of ϕ is given
by minus the Hessian inverse of log(ϕ) (see E1) or by E2.
It is useful to inflate the approximate covariance matrix a
little.

3. Tails: ι should have moments of order not higher than ϕ

(using T1). If ι has thicker tails than ϕ, this avoids
extreme values of w(θ) in the tails.
2. and 3. help to prevent the explosion of the weight
function in the tails of ι.
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Method 1

Normal or Student approximation around the mode:

A 2nd-order Taylor expansion of log(ϕ)around its mode θ∗
is equal to constant − 0.5(θ − θ∗)′H(θ − θ∗), where
H = −∂2 log(ϕ)/∂θ∂θ′|θ∗. Hence θ ∼ N(θ∗, cH−1), where
c ≥ 1 is a tuning constant is a possible importance
density.

To get thicker tails, use θ ∼ t(θ∗, 1, H/c, ν) with ν ≤ order
of existence of posterior moments (if T1).

Not appropriate for very skewed or multimodal posterior!
Bauwens and Laurent (JBES, 2005) show how to make
multivariate normal or Student densities skewed.
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Method 2

Importance function incorporating exact conditional
densities:

If θ = (α β) and ϕ(β|α) can be simulated directly, it should
be incorporated in ι(θ), i.e.

ι(θ) = ϕ(β|α) ιm(α),

where ιm(.) is the marginal I.F. of α, an approximation of
ϕ(α) (obtained by another method).

Then, the weight function depends only on α.

Simulation of ι is done sequentially: α(i) is drawn from
ιm(.), then β from ϕ(β|α(i)). Repeat n times.
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Rao-Blackwellisation

Instead of using

βI =

∑n
i=1 β(i)w(α(i))
∑n

i=1 w(α(i))

to estimate E(β|y), if E(β|α, y) is known analytically and
easy to compute, one can use the estimator

βIc =

∑n
i=1 E(β|α(i), y) w(α(i))
∑n

i=1 w(α(i))

of Eα|y[E(β|α, y)] = E(β|y). This is more efficient because
Varα|y[E(β|α, y)] ≤ Var(β|y). Indeed,
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Rao-Blackwellisation

Var(β|y) = Eα|y[Var(β|α, y)] + Varα|y[E(β|α, y)].

The latter relation can also be used to estimate Var(β|y)

by

n∑

i=1

Var(β|α(i)) w(α(i))

n∑

i=1

w(α(i))

+

n∑

i=1

E(β|α(i)) E(β′|α(i)) w(α(i))

n∑

i=1

w(α(i))

− βIcβ
′
Ic

For the marginal density at the value β:

ϕ(β) = Eα[ϕ(β|α)] ≃
∑n

i=1 ϕ(β|α(i)) w(α(i))/
∑n

i=1 w(α(i)).

Repeat this for a grid of β to plot the density.
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Method 3

Optimal choice of the parameters of the I.F.:

First choose a parametric family for the I.F. (normal,
Student, skew-Student...). Denote it by ι(θ|λ) where λ is
the parameter vector of the I.F.

Then minimize the Monte Carlo variance of the quantity
to be estimated. Choosing this to be the integral of the
posterior kernel (cκ), one has to find λ that minimizes

Varι(κ/ι) or equivalently
∫ [κ(θ)]2

ι(θ|λ)
dθ, but the integral is

usually not known. A numerical approximation may be
available. This method is used in efficient importance
sampling.
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Other methods

In method 2, ιm(α) could be ϕ(α|β̂) where β̂ is the
posterior mode of β, if this is a known density that can be
easily simulated. Beware of too small variances due to
conditioning (Rao-Blackwell!).

Sequential updating: start with an I.F. obtained by
method 1 or 2, estimate posterior moments with it, then
define a new I.F. that uses these first estimates of the
posterior moments. This helps to improve the covariance
matrix and to discover important skewness directions in
the posterior.

A transformation of θ may induce more symmetry (e.g.
with skewness to the right, the log induces more
symmetry).
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Note on the weight function

In practice, use a kernel i(θ) of the I.F., such that
ι(θ) = i(θ)/ci ∝ i(θ) where ci =

∫
i(θ)dθ is analytically

known.

Define w(θ) = κ(θ|y)/i(θ), rather than κ(θ|y)/ι(θ).

Then w̄n = 1
n

∑n
i=1 w(θ(i)) estimates cκ/ci, where

cκ =
∫

κ(θ|y)dθ, since

1 =
∫ c−1

κ κ(θ|y)

c−1

i i(θ)
ι(θ)dθ = c−1

κ

c−1

i

Eι

[κ(θ|y)
i(θ)

]
≃ c−1

κ

c−1

i

w̄n

⇒ w̄nci is an operational estimator of cκ.

For computing µg = Eι[g(θ)w(θ)]

Eι[w(θ)]
, using i(θ) rather than ι(θ)

in w does not make any difference.
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Practical convergence hints

Always check the weights: plot their histogram, and be
sure that there is not just a single draw that determines
the results. This happens if there is a draw with a relative
weight close to 1.

Check the coefficient of variation of the weights. It
should stabilize when n is increased. If it explodes, the
I.F. is not good enough.

Always estimate the probabilistic error bound of the
estimates of the integral of the posterior kernel (cκ) and
of the posterior expectations. They should not exceed 5
to 10 per cent. With a stable coefficient of variation of
the weights, this can always be attained by increasing n.
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Rejection sampling (RS)

Instead of weigthing the draws of an I.F., RS checks if a
draw generated from it is acceptable as a draw of the
posterior.

A candidate draw θ is accepted if

κ(θ) > c.i(θ)u,

where u ∈ (0, 1) is a uniform random number, and

c ≥ sup
θ

κ(θ)

i(θ)
∈ [1,∞).

The purpose of multiplying i by c is to envelope κ. The
volume between κ and the envelope is the rejection
region and should be as small as possible (hence set c =
the sup).
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RS graph
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RS: properties

Accepted draws constitute an IID sample of the posterior
(see next slide) and can be used as in direct sampling to
estimate posterior moments.

The percentage of accepted draws is an estimator of
cκ/(c.ci). This percentage can be very low, and the
method can be very inefficient in the sense that the
average computing time to get one accepted draw is
very large.

For a given ι and g, the importance sampling estimator
of µg has a smaller Monte Carlo variance than the
rejection sampling estimator.

Mainly used for simulating some univariate distributions
by building a tight envelope.
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RS: proof

The density of an accepted θ∗ is the density ι(.) conditional
on the acceptation of the generated point:
ι(θ|u ≤ κ(θ∗)/c.i(θ∗))

=
Pr[u ≤ κ(θ∗)/c.i(θ∗)|θ∗ = θ]ι(θ)

Pr[u ≤ κ(θ∗)/c.i(θ∗)]
(by Bayes theorem)

=
[κ(θ)/c.i(θ)]ι(θ)

∫

Pr[u ≤ κ(θ∗)/c.i(θ∗)|θ∗ = θ]ι(θ)dθ
(since u ∼ U(0, 1))

=
[κ(θ)/c.i(θ)]ι(θ)

∫

[κ(θ)/c.i(θ)]ι(θ)dθ
=

κ(θ)/(c.ci)
∫

[κ(θ)/(c.ci)]dθ
= ϕ(θ)

(since ι(θ)/i(θ) = c−1
i and c.ci is a constant).
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RS: special simple case

When the prior implies inequality constraints, say
ϕ(θ) ∝ κ(θ)1l {θ∈Θr} and Θr ∈ Θ where Θ is the unrestricted
parameter space, and the posterior without constraints is
easy to simulate (directly or otherwise), the
unconstrained posterior can be used as the simulator ι,
and one has simply to reject the draws that do not lie in
Θr.

Example: yt = x′
tβ + ǫt, ǫt ∼ I.N(0, σ2), t = 1, . . . , T.

Prior: ϕ(β, σ2) ∝ 1l {β1>0}1/σ
2.

Posterior: β|d ∼ t(β̂, y′My,X ′X,T − k)1l {β1>0} ⇒ generate

from the t and keep only draws such that β
(i)
1 > 0.

Beware Pr(β1 > 0|d) is small!
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Chapter 2, Section 2.3

2.3 Monte Carlo integration
2.3.1 Definition
2.3.2 Independent sampling Direct sampling
Importance Sampling
Rejection sampling
2.3.3 Dependent sampling
Independent Metropolis-Hastings sampling
Random walk MH sampling
Gibbs sampling
Estimation of posterior moments and diagnostics
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MCMC

Markov chain Monte Carlo (MCMC) methods produce
dependent samples of the posterior, rather than
independent samples produced by direct, importance or
rejection sampling. However, they can deal with case 1
(unknown type of posterior) and are more easy to apply
than importance or rejection sampling in many cases.

Dependence in the sample does not impede consistent
estimation of posterior features provided the generated
sequence is ergodic.
However dependence renders statistical inference more
difficult, e.g. to estimate the variance of the mean of a
dependent sample is more difficult than for an
independent sample.
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MCMC

Convergence is not granted and must be checked. The
question of convergence is whether the sequence of
generated draws can be considered as draws of the
posterior, i.e. does the distribution of the draws
generated by a MCMC sampler converge to the
posterior?

Moreover, there is no ‘general’ asymptotic normality
theorem for ergodic sequences. Appropriate conditions
are ‘case-dependent’.

Gibbs sampling and Metropolis-Hastings (MH) sampling
are the two most important classes of MCMC algorithms.
They can be combined.
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Independent MH sampling

As IS and RS, MH uses an auxiliary density, called the
candidate density, to generate θ. It uses an
acceptance/rejection mechanism to decide if a draw
can/cannot be accepted as a draw of the posterior. Let
θ(i) be the last accepted draw.

The next draw θ(i+1) is generated as follows:
1) generate θ∗ ∼ ι(θ)

2) compute p = min

[

ϕ(θ∗)

ϕ(θ(i))

ι(θ(i))

ι(θ∗)
, 1

]

= min

[

w(θ∗)

w(θ(i))
, 1

]

3) take θ(i+1) =

{

θ∗ with probability p

θ(i) with probability 1 − p.
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Independent MH sampling

If ϕ = ι, this is direct sampling.

To compute p, there is no need to know the integrals of
the posterior and importance kernels.

θ∗, the candidate draw, is accepted surely if it has more
weight than the previous draw. Otherwise, it is accepted
with probability w(θ∗)/w(θ(i)).

Some draws may be repeated several times, i.e.
θ(i+1) = θ(i) = θ(i−1) = ... may occur. This creates
dependence in the sample.

This algorithm is called the independent MH, because
the candidate density does not depend on the previous
accepted draw.
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Random walk MH sampling

The RW MH sampler generates a candidate draw θ∗ by a
move around θ(i): θ∗ = θ(i) + ǫ where ǫ is a draw of a
density ι(ǫ) centered on 0 and with an appropriate
covariance structure. Hence θ∗ ∼ ι(θ|θ(i)). Often, the
density of ǫ is chosen as multivariate normal with
covariance Σ, so that θ∗ ∼ N(θ(i),Σ). The choice of Σ is
crucial.

The next draw θ(i+1) is obtained as follows:
1) generate θ∗ ∼ ι(θ|θ(i))

2) compute p = min

[

ϕ(θ∗)

ϕ(θ(i))

ι(θ(i)|θ∗)
ι(θ∗|θ(i))

, 1

]

3) take θ(i+1) =

{

θ∗ with probability p

θ(i) with probability 1 − p.
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Convergence and ergodicity

Sufficient conditions for convergence and ergodicity of a
MH sampler when the candidate ι(θ|θ(p)) depends on the
previous draw θ(p), are that i) the candidate is > 0 ∀θ and
θ(p) ∈ Θ, and
ii) ϕ(θ|y) > 0 ∀θ in the parameter space Θ.

For an independent MH sampler, it is sufficient that
0 < w(θ) < ∞ ∀θ ∈ Θ.
In this case, one can even invoke an asymptotic
normality theorem for the simple average of an
(integrable) function of the draws (because the draws
are uniformly ergodic).

Bayesian Econometrics – p. 78/196



Simple example

Suppose ϕ(θ) is a N(0, 1) and ι(θ) is a N(0, 1/c).

⇒ w(θ) = c−1/2 exp[0.5(c − 1)θ2] and
w(θ)/w(θ′) = exp[0.5(c − 1)(θ2 − θ′2)]

Suppose that c = 3, i.e. the candidate is more
concentrated than the target.

A move from θ′ = 2 to θ = 0 is very unlikely since
p = w(2)/w(0) = exp(−4) = 0.018: the value 2 must be
‘oversampled’.

A move from θ′ = 0 to θ = 2 is surely accepted since
w(0)/w(2) = exp(4) > 1 so that p = 1.
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Gibbs sampling

Let ϕ(θ) denote the posterior. Suppose that one can
partition θ into two ‘blocks’ as (θ1, θ2) such that the ‘full
conditional densities’ ϕ(θ1|θ2) and ϕ(θ2|θ1) can be directly
simulated (e.g. they are normal densities, although the
joint density is not normal).

The Gibbs sampler generates a sequence of dependent
draws of the joint posterior as follows: given θ(i−1), the
next point (θ

(i)
1 , θ

(i)
2 ) is generated by the following cycle:

θ
(i)
1 ∼ ϕ(θ1|θ(i−1)

2 ),

θ
(i)
2 ∼ ϕ(θ2|θ(i)

1 ).
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Gibbs sampling

An initial value θ
(0)
2 (in the support of the posterior) must

be provided, which has no influence after a sufficiently
large number of cycles has been performed (if the
Markov chain sequence is ergodic).
⇒ Always discard a ‘warm-up’ (or ‘burn-in’) sequence of
initial draws to get rid of the influence of the initial value.

Pick the initial value as a central value (from the
posterior mode for example) rather than an unusual
value far in the tails.
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Convergence and ergodicity

Loosely stated, a sufficient condition for convergence
and ergodicity is that there is a positive probability to
move from any point to any other point (the full
conditional densities must be strictly positive for all
values of the conditioning variables).

Another sufficient condition excludes ‘pathological’ cases
where the sampler gets trapped in a point or a subset of
the parameter space. For example, with a disconnected
space, the danger is to never visit a part of the space.
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Difficulty of Gibbs sampling

A lot of dependence in the chain, implying that a large
number of draws are needed to explore the posterior. A
great danger is to remain stuck for long in a part of the
parameter space.

Example: let (θ1, θ2)
′ ∼ N2(0, R) where R is a correlation

matrix with ρ the off-diagonal element.
⇒ θi|θj ∼ N(ρθj , 1 − ρ2).
If |ρ| = 1, the chain stays always at the starting point. If
|ρ| is close to 1, it moves quite slowly in the space of θ.

Highly correlated elements of θ should be in the same
block, if possible!
NB: one block corresponds to direct sampling.
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More blocks

With m blocks, i.e. θ = (θ1, θ2, . . . , θm), a draw θ(i) is
generated using the previous draw θ(i−1) by the following
cycle:

θ
(i)
1 ∼ ϕ(θ1|θ(i−1)

2 , . . . , θ
(i−1)
m ),

θ
(i)
2 ∼ ϕ(θ2|θ(i)

1 , θ
(i−1)
3 , . . . , θ

(i−1)
m ),

...
θ
(i)
j ∼ ϕ(θj|θ(i)

1 , . . . , θ
(i)
j−1, θ

(i−1)
j+1 , . . . , θ

(i−1)
m ),

...
θ
(i)
m ∼ ϕ(θm|θ(i)

1 , . . . , θ
(i)
m−1).
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Combining Gibbs and MH

Assume 2 blocks, such that θ1|θ2 can be simulated
directly but θ2|θ1 not.

In the Gibbs sampling algorithm, the step of drawing
θ2|θ1 can be implemented by an indirect method, like
rejection or MH sampling. The candidate density should
be redefined at each iteration of the Gibbs to take
account of the last sampled value of θ1.

Example: nonlinear regression:
yt = f(x′

tβ) + ǫt, ǫt ∼ I.N(0, σ2), t = 1, . . . , T.

Prior: ϕ(β, σ2) ∝ ϕ(β)1/σ2.
Posterior: β|σ2, d in unknown class,
σ2|β, d ∼ IG2(

∑T
t=1 ǫ2t , T ).
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Estimation of posterior moments

gmcmc =
∑n

i=1 g(θ(i))/n
p→ µg ≡ E[g(θ)] as in direct

sampling.

In Gibbs sampling, ‘Rao-Blackwellisation’ can be used,
e.g. with 2 blocks

∑n
i=1 E(θ1|θ(i)

2 )/n
p→ E(θ1). However,

there is no guarantee that this estimator has smaller
variance than

∑n
i=1 θ

(i)
1 /n.

The reason is that the variance of both estimators
depends on the autocovariances of θ

(i)
1 and of E(θ1|θ(i)

2 )

and not only of the variances like in an IID sample.
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Numerical standard error

If the generated draws are stationary,

Var(gmcmc) =
1

n



γ0 + 2

n−1∑

j=1

γj

n − j

n



 =
S(0)

n

where γj is the jth-order autocovariance of {g(θ(i)}n
i=1

and S(0) is the spectral density at 0. This can be
estimated consistently.

The numerical standard error is the square root of this
estimated variance divided by n. A probabilistic error
bound (or a confidence interval) can be evaluated relying
on an asymptotic normality theorem, as for direct
sampling and IS.
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Subsampling the chain

Instead of basing the estimate of µg on the mean of a
single long dependent sequence, with the difficulty of
estimating reliably the numerical variance, one can
sub-sample the chain, i.e. retain draws that are distant
enough from each other such that they can be
considered to be independent. The mean of the retained
points is an estimator whose numerical standard error is
computed like in the case of direct sampling. However,
this wastes a lot of points.

Bayesian Econometrics – p. 88/196



Parallel chains

Another approach is to run the simulation many times, in
each case from a different starting value, and to keep
one final draw from each simulation (after the warm-up
phase).

These final draws are independent if convergence of the
chain has been achieved and the different starting
values are well dispersed and drawn independently (e.g.
from the prior or an approximation to the posterior).

An average of the final draws is an estimator of µg,
whose numerical standard error is computed as in IID
sampling.
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Convergence diagnostics for MCMC

Apply Geweke’s test to g(θ) = θ (element by element).

Plot and analyze the autocorrelations of the draws.

Do the same with CUMSUM statistics.

Useful reference with example of use of the diagnostics:
Bauwens, L. and Giot, P. (1998), A Gibbs sampling
approach to cointegration, Computational Statistics 13,
339-368.

For a diagnostic based on parallel chains, read Koop’s
book, pages 67-68.
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Geweke’s test

Geweke’s test statistic compares the estimate ḡA of a
posterior mean from the first nA draws with the estimate
ḡB from the last nB draws. If the two subsamples (of size
nA and nB) are well separated (i.e. there are many
observations between them), they should be
independent. The statistic, normally distributed if n is
large and the chain has converged, is

Z =
ḡA − ḡB

(nse2
A + nse2

B)1/2

where nseA and nseB are the numerical standard errors
of each subsample.
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CUMSUM statistics

The standardized CUMSUM statistic for (scalar) θ is:

CSt =

(

1

t

t∑

i=1

θ(i) − mθ

)

/sθ,

where mθ and sθ are the MC sample mean and standard
deviation of the n draws.

If the MCMC sampler converges, the graph of CSt

against t should converge smoothly to zero. On the
contrary, long and regular excursions away from zero are
an indication of the absence of convergence.
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CUMSUM statistics

A value of 0.05 for a CUMSUM after t draws means that
the estimate of the posterior expectation diverges from
the final estimate (after n draws) by 5 per cent in units of
the final estimate of the posterior standard deviation; so
a divergence of even 25 per cent is not a bad result.

One could declare that the sampler has converged after
N(ǫ) draws for the estimation of a certain quantity (like a posterior
mean) with a relative error of 100 × ǫ per cent, if CSt

remains within a band of ±ǫ for all t larger than N(ǫ). The
relative error should be fixed at a low value, such as
0.05.
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COURSE STRUCTURE

Chapter 1: Concepts (p 2)

Chapter 2: Numerical Methods (p 33)

Chapter 3: Single Equation Regression Analysis

Chapter 4: VAR Models (p 149)
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CHAPTER 3

3.1 Regression with non-informative prior

3.2 Regression with conjugate prior

3.3 Partially linear model

3.4 Regression with non-conjugate prior

3.5 Heteroskedastic errors

3.6 Autocorrelated errors

3.7 IID Student errors

In 3.1-3.4, error terms are assumed IID N(0, σ2).
In 3.5-3.6, they are still assumed normally distributed.
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Gaussian linear regression

yt = x′
tβ + ǫt, ǫt ∼ I.N(0, σ2), t = 1, . . . , T ;

xt of dimension k × 1 and exogenous for β and σ2;
y = Xβ + u in matrix format. Denote (y X) by d.
We assume T > k.

Likelihood function:
L(β, σ2|d) ∝ (σ2)−T/2 exp[−1

2 σ−2(y − Xβ)′(y − Xβ)]

= (σ2)−T/2 exp
(

−1
2 σ−2[s + (β − β̂)′X ′X(β − β̂)]

)

where

β̂ = (X ′X)−1X ′y (the OLS estimator),
s = y′MXy (with MX = IT − X(X ′X)−1X ′) is the sum of
squared OLS residuals (SSR).
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Non-informative prior (NIP)

It is usually defined as ϕ(β, σ2) ∝ 1/σ2.

This can be interpreted as uniform on β on IRk, and
uniform on ln σ2 on IR, since ϕ(lnσ2) ∝ 1 ⇒ ϕ(σ2) ∝ 1/σ2

by the change of variable rule.

The prior is ‘improper’: it is not a density, since it does
not integrate to 1. However this does not prevent the
posterior to be integrable (or proper).

Instead of saying that a parameter is uniformly
distributed on (−∞,+∞), we could decide that it should
be uniformly distributed on the bounded interval
(−B,+B). By choosing B to be very large but finite, the
prior is proper and the posterior will be the same as if we
use the NIP.
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Posterior under NIP

Multiplying prior and likelihood:

ϕ(β, σ2|d) ∝ (σ2)−(T+2)/2 exp

[

−(β − β̂)′X ′X(β − β̂) + s

2σ2

]

The posterior density is a Normal-inverted-gamma
density: NIG(β̂, X ′X, s, ν), meaning

ϕ(β, σ2|d) = ϕ(β|σ2, d)ϕ(σ2|d) where

β|σ2, d ∼ Nk(β̂, σ2(X ′X)−1) and

σ2|d ∼ IG2(ν, s),

where IG2 means Inverted-Gamma-2, and ν = T − k > 0.
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Inverted-Gamma-2 density

A random variable X > 0 has an IG2(ν, s) density, where
ν > 0, s > 0 are the degrees of freedom and scale
parameters, if its density is given by

(s

2

)ν/2 1

Γ(ν/2)
x− 1

2
(ν+2) exp

(

− s

2x

)

.

where Γ(z) =
∫ z
0 uz−1 exp(−z)dz.

E(X) =
s

ν − 2
if ν > 2, Var(X) =

2

ν − 4
[E(X)]2 if ν > 4.

If X ∼ IG2(ν, s), Y = 1/X ∼ G2(ν, s). Note that
W ∼ G2(ν, 1) is the same as W ∼ χ2(ν). Equivalently,
Y = W/s and X = s/W .
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Posterior under NIP

The joint posterior density ϕ(β, σ2|d) can also be
factorized as

ϕ(β, σ2|d) = ϕ(β|d)ϕ(σ2|β, d) where

σ2|β, d ∼ IG2(T, (y − Xβ)′(y − Xβ))

β|d ∼ tk(β̂, s,X ′X, ν).

This shows that the marginal posterior density of β is a
multivariate t (Student) density, with parameters β̂, X ′X,
s and ν.
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Multivariate t-density

A random vector X ∈ IRk has a Student (or t) distribution
with parameters ν > 0 (degrees of freedom), µ ∈ Rk, M a
positive-definite matrix of order k, and s > 0, i.e.
X ∼ tk(µ, s,M, ν), if its density function is given by

ft(x|µ, s,m, ν) =
Γ(ν+k

2 )

Γ(ν
2 )π

k

2

s
1

2
ν |M | 12 [s+m (x−µ)′M(x−µ)]−

1

2
(ν+k).

Its mean and variance-covariance matrix are

E(X) = µ if ν > 1, Var(X) =
s

ν − 2
M−1 if ν > 2.
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Posterior moments under NIP

Analytical results are available, such as

E(β|d) = β̂,

Var(β|d) =
s

ν − 2
(X ′X)−1 = E(σ2|d)(X ′X)−1,

Direct sampling can be used: e.g. if we are interested by
the marginal posterior density of (β1 + β2)/(1 − β3), we

1. Generate R draws {β(r)}R
r=1 of β from tk(β̂, s,X ′X, ν).

2. Compute (β
(r)
1 + β

(r)
2 )/(1 − β

(r)
3 ) for r = 1, 2, . . . , R.

3. Use a kernel method to estimate of the posterior
density.

NB: moments of such a ratio do not exist!
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Conjugate prior densities

A (natural) conjugate prior (CP) density has the same
functional form (with respect to θ) as the likelihood. The
posterior density then retains the same functional form
as the prior.

CP densities provide analytical posterior results: no
need for numerical integration!

Drawback: they restrict the class of prior densities.

They are useful tools for more complex models.

They exist when the data density belong to the
exponential family, so that sufficient statistics exist.
See BLR, sections 2.4 and 2.5 for details.
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CP for linear regression

The likelihood has the functional form of a
NIG(β̂, X ′X, s, T − k − 2) density for (β′ σ2).

Hence, the CP class is NIG(β0,M0, s0, ν0),
where s0 > 0, ν0 > 0, β0 ∈ Rk and M0 is a PDS matrix
(k × k).

Written explicitly, the prior kernel is

(σ2)−(ν0+k+2)/2 exp
(
−1

2 σ−2[s0 + (β − β0)
′M0(β − β0)]

)
.

Some prior moments:
E(β) = β0, Var(β) = M−1

0 s0/(ν0 − 2) if ν0 > 2,

E(σ2) = s0/(ν0 − 2).
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Posterior under CP

The posterior is NIG(β∗,M∗, s∗, ν∗), where
M∗ = M0 + X ′X

β∗ = M−1
∗ (M0β0 + X ′Xβ̂)

s∗ = s0 + s + (β0 − β̂)′[M−1
0 + (X ′X)−1]−1(β0 − β̂)

ν∗ = ν0 + T

⇒
β|d ∼ tk(β∗, s∗,M∗, ν∗) and
E(β|d) = β∗, Var(β|d) = s∗/(ν∗ − 2)M−1

∗ .

σ2|d ∼ IG2(ν∗, s∗) and E(σ2) = s∗/(ν∗ − 2).

β|σ2, d ∼ Nk(β∗, σ2M−1
∗ ) and

σ2|β, d ∼ IG2(ν∗ + k, s∗ + (β − β∗)′M∗(β − β∗)).
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Gibbs sampling for posterior under CP

For computing special posterior features, one can use direct
sampling (as for the NIP). Another option is a Gibbs
sampling algorithm to generate R draws from the posterior
of β and σ2 (after R0 warming-up draws):

1. Choose an initial value (σ2)(0) (e.g. SSR/(T − k)).

2. Set r = 1.

3. Draw successively β(r) from Nk

(

β∗, (σ2)(r−1)M−1
∗
)

and

(σ2)(r) from IG2(ν∗ + k, s∗ + (β(r) − β∗)′M∗(β(r) − β∗)).

4. Set r = r + 1 and go to step 3 unless r > R0 + R.

5. Discard the first R0 values of β(r) and (σ2)(r). Compute
what you are interested in from the last R draws.
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Proof

It can be checked directly that
s0 + (β − β0)

′M0(β − β0) + s + (β − β̂)′X ′X(β − β̂)

= (β − β∗)′M∗(β − β∗) + s0 + s + β′
0M0β0 + β̂′X ′Xβ̂ − β′

∗M∗β∗,
so that
s∗ = s0 + s + β′

0M0β0 + β̂′X ′Xβ̂ − β′
∗M∗β∗.

More algebra allows to express s∗ as on page 107.

Then the posterior kernel is

(σ2)−(T+ν0+k+2)/2 exp
(
−1

2 σ−2[s∗ + (β − β∗)′M∗(β − β∗)]
)
,

which has the form of a NIG density kernel.
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NIP and CP

The NIP prior ∝ 1/σ2 is the limit of the NIG conjugate
prior kernel obtained whenM0 → 0, s0 → 0, ν0 → −k.

These values are at the boundary of the admissible
values of M0 > 0, s0 > 0.
For ν0, the limit is −k rather than 0 (sometimes used)
because then ν∗ = T − k (instead of T ): it is sensible to
have a degree of freedom correction.

The value of β0 is irrelevant when M0 = 0 and is fixed at
β0 = 0 for simplicity.

With M0 = 0, s0 = 0, ν0 = −k, and β0 = 0, the posterior
under the CP is the same as the posterior under the NIP.
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Partially non-informative conjugate prior

Let β′ = (β′
1 β′

2): one can be non-informative on e.g. β2

and use a conjugate prior on β1, by setting

β0 =

(

β0,1

0

)

, M0 =

(

M0,11 0

0 0

)

.

NB: M−1
0 is like M0 but with M−1

0,11.

The posterior parameters given three pages above are
still well defined.
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Prior elicitation of β/1

For each element of β on which one has prior
information, assign directly the prior mean and standard
deviation of the Student distribution.
Given the values of s0 and ν0 > 2 chosen for the IG2 prior
of σ2, deduce the values of β0 and M0:

β0 = E(β), M0 = [Var(β)]−1s0/(ν0 − 2).

Example: given E(βj) and Var(βj) ⇒ β0,j = E(βj) and
m0,jj = [1/Var(βj)]s0/(ν0 − 2).

The latter is correct if Var(β) is DIAGONAL, as is often
assumed for simplicity.

Bayesian Econometrics – p. 112/196



Prior elicitation of β/2

Prior beliefs may come from theoretical restrictions or
previous empirical results on similar (but different) data.

Example 1: theory constrains that βL ≤ β ≤ βU (β being
scalar). The prior mean can be 0.5(βL + βU ). If the
marginal prior is close to a Normal, fixing the prior
standard deviation to (βU − βS)/6, implies that
Pr(βL ≤ β ≤ βU ) ≈ 1.

Example 2: let β be the AR(1) coefficient of a dynamic
regression for the inflation rate. It should be less than 1
(inflation is not explosive), and it is likely to be positive
(there is some persistence in inflation). One could
assume that βL = 0 and βU = 0.8 and proceed as above.
A less informative prior is based on βL = −1 and βU = 1.
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Prior elicitation of β/3

An annoying aspect of the CP is that Var(β|σ2) = σ2M−1
0 .

Hence, we cannot just fix Var(β) to find M0 since
M0 = [Var(β)]−1s0/(ν0 − 2).

We must choose also s0 and ν0, i.e. we must elicit a prior
for σ2.

It is not easy to have prior beliefs about σ2: we would
prefer to be non-informative on it. But setting s0 = 0

implies that M0 = [Var(β)]−1s0/(ν0 − 2) is then equal to 0:
we would be also non-informative on β0.

To be practical, we can fix s0 = s (the SSR), choose ν0

(e.g. = 3) and deduce M0.

To avoid such arbitrary tricks, we should use a
non-conjugate prior.
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Zellner’s g-prior

Zellner’s proposed the following CP:

β|σ2 ∼ Nk(0, gσ2(X ′X)−1)

where g > 0 is a scalar value to be chosen.

The g-prior mean is β0 = 0. The posterior mean is

β̄ =
g

1 + g
β̂.

If g → ∞, β̄ → β̂, and if g → 0, β̄ → 0.

The posterior variance is

Var(β|d) = E(σ2|d)
g

1 + g
(X ′X)−1.
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Posterior under CP: Another presentation

Model: y = Xβ + ǫ, ǫ ∼ NT (0, σ2IT ).

Prior: β|σ2 ∼ Nk(β0, σ
2M−1

0 ). This can be expressed as:
β = β0 + u with u ∼ Nk(0, σ

2M−1
0 ) or as β0 = β − u, so that

(M
1/2
0 )′β0 = (M

1/2
0 )′β + ǫ0, ǫ0 = −(M

1/2
0 )′u ∼ Nk(0, σ

2Ik).

Stacking, we get an extended regression:
(

y

(M
1/2
0 )′β0

)

=

(

X

(M
1/2
0 )′

)

β +

(

ǫ

ǫ0

)

with

(

ǫ

ǫ0

)

∼ N(0, σ2IT+k).

Combining the prior σ2 ∼ IG2(ν0, s0) and ϕ(β) ∝ 1 with the
likelihood function of the extended regression gives the
posterior defined on page 107: in particular, β∗ is the
OLS formula and s∗ the OLS SSR applied to this
extended regression.
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Partially linear model

Consider yt = x′
tβ + f(zt) + ǫt, where zt is a scalar and f(.)

an unknown function. Assume ǫt ∼ I.N(0, σ2). The vector
xt should not contain a 1 since f(z1) plays the role of the
intercept.

Observations must be ordered like
z1 ≤ z2 ≤ . . . < . . . ≤ zT , which may not be sensible, e.g.
in time series data (except if zt = t).

Notations: γ = (f(z1) f(z2) . . . f(zT ))′, W = (X IT ),
δ = (β′ γ′)′. Then y = Wδ + ǫ.

There are more coefficients than observations
(k + T > T ). We need more information to overcome the
fact that W ′W is singular.
A non-informative prior is excluded!
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What prior information?

A smoothing prior: the function f(zt) is likely to be
smooth, e.g. such that γt − γt−1 is small for all t. This
fixes the prior expectations of the differences at 0. Then
one can fix the prior variances at the same small value η,
and the prior covariances at 0.

Defining P−1
0 = diag(η η . . . η), the prior on γ can be

formalized as follows: Dγ ∼ NT−1(0, σ
2P−1

0 ), where D is
the first-differencing matrix, of dimension T − 1 × T , such
that Dγ = (γ2 − γ1, γ3 − γ2 . . . γT − γT−1)

′.

Combined with an IG2 prior on σ2, the prior on Dγ is
conjugate. It can be extended to include a conjugate
prior on β.
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Posterior

Even if the prior is non-informative on β, the posterior is
integrable, i.e. W ′W + M0 is of full rank, where

M0 =

(

0 0

0 P0

)

.

The extended regression is:
(

y

0T−1

)

=

(

X IT

0 (P
1/2
0 )′D

)(

β

γ

)

+

(

ǫ

ǫ0

)

, and the

parameters of the NIG posterior can be computed as
explained for the conjugate prior.

For more details, see Koop and Poirier (2004), Bayesian
variants of classical semiparametric regression
techniques, Journal of Econometrics.
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Normal-diffuse prior

A drawback of the conjugate prior is that one has to be
informative on σ2 to be informative on β, whereas one
may prefer, for simplicity, to use ϕ(σ2) ∝ 1/σ2.

To avoid this, one can define the prior as independent
between β and σ2, with ϕ(σ2) non-informative. Then a
convenient prior for β is a Normal prior: β ∼ Nk(β0,M

−1
0 ).

Notice that Var(β) = M−1
0 does not depend on σ2 as in the

CP case.

Elicitation of M0 can be done directly without having to
bother about s0 and ν0 as in the CP case: now

M0 = [Var(β)]−1.
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Posterior under Normal-diffuse prior

The posterior ϕ(β, σ2|d) is proportional to

(σ2)−(T+2)/2 exp
(

−1
2 σ−2[s + (β − β̂)′X ′X(β − β̂)]

)

× exp [−0.5(β − β0)
′M0(β − β0)].

Simple computations show that

1) β|σ2, d ∼ Nk(β
∗
, V

∗
), where

V
∗

=
(
M0 + σ−2X ′X

)−1,

β
∗

= V
∗ (

M0β0 + σ−2X ′Xβ̂
)

,

2) σ2|β, d ∼ IG2(T, (y − Xβ)′(y − Xβ)).

Computations of posterior features can easily be done
using a Gibbs sampler similar to the one for the CP
case, but using the conditional densities defined above.
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Special cases of Normal prior/1

Ridge regression prior: β ∼ Nk(0, τIk). It leads to a
posterior mean similar to the estimate obtained from
classical ridge regression:
β
∗

=
(
σ−2X ′X + τ−1Ik

)−1
σ−2X ′y.

If τ → ∞, β
∗ → β̂, and if τ → 0, β

∗ → 0, like with the
g-prior.
However, for 0 < τ < ∞, the Gibbs sampler must be
used.

How to choose τ is a sensitive issue.

A drawback is that the same amount of shrinkage is
imposed on all coefficients.
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Special cases of Normal prior/2

Hierarchical shrinkage prior: use independent Normal
priors on each element of β: βi ∼ N(0, τi) for i = 1, 2, . . . , k.

To avoid choosing τi for each coefficient, we use a
common prior for them : τi ∼ IG2(q1, q2)∀i.

The posterior can be simulated by a Gibbs sampler:

1. Draw τi|βi from IG2

(
q1 + 1, q2 + β2

i

)
∀i.

2. Draw σ2|β, d from IG2 (T, (y − Xβ)′(y − Xβ)).
3. Draw β|τ1, . . . , τk, σ

2, d from

Nk

((
σ−2X ′X + V −1

)−1
X ′y,

(
σ−2X ′X + V −1

)−1
)

where V = diag (τ1, ..., τk) is the prior covariance matrix
of β given τ1, τ2, . . . , τk.
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Non-normal-diffuse prior

Instead of the Nk(β0,M
−1
0 ) prior, one can use any other

prior ϕ(β). This is necessary to avoid using a symmetric
prior for a parameter.

Example: the long-run marginal propensity to consume
in a macro equation should be smaller than but close to
1. A symmetric prior should have a very small variance.
An asymmetric prior can avoid this.

It could be a Beta prior or a truncated Normal prior.
The latter is convenient since the previous results for the
Normal-diffuse prior can be used, adding the indicator
function for the prior on β to the prior and posterior.
Then a rejection step must be added to the Gibbs
sampler: reject any draw of β that does not lie in the
required region.
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MH step in Gibbs sampler

In general ϕ(β|σ2, d) ∝ ϕ(β) exp
(

−1
2 (β − β̂)′X

′X
σ2 (β − β̂)

)

.

Hence β|σ2, d is not Normal and not in a known class.

Then drawing directly β|σ2, d in a Gibbs sampler is not
feasible: one can draw using a MH step.

The proposal density can be designed as follows:
-approximate the prior ϕ(β) by a Normal density;
-compute the posterior under the approximating Normal
prior, say Nk(β∗, V

∗
) (4 pages above).

-use as proposal for the MH step this Normal density.

If the Normal approximation is not good, the MH step will
be inefficient.
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Heteroskedasticity

yt = x′
tβ + ǫt, ǫt ∼ I.N(0, σ2

t ), t = 1, . . . , T where
σ2

t = σ2 h(zt, α) > 0

zt: vector of ℓ variables, may be functions of xt,
but NOT of β ⇒ GARCH models excluded!

α: vector of ℓ parameters
no constant term in zt (its role is taken by σ2)
h(.) defined so that h(zt, 0) = 1

xt and zt weakly exogenous for β, σ2 and α.

Examples:
h(z′tα) = exp(z′tα), α ∈ IRℓ.
h(z′tα) = 1 + z′tα, α ∈ A ⊂ IRℓ such that
1 + z′tα > 0, ∀zt.
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Likelihood function

Let H(α) = diag(1/h(z′1α), 1/h(z′2α), . . . , 1/h(z′T α)).

Likelihood function:

L(β, σ2, α; d)

∝ σ−T
√

|H(α)| exp

[

− 1

2σ2
(y − Xβ)′H(α)(y − Xβ)

]

∝ σ−T
√

|H(α)| exp

(

− 1

2σ2
{[β − b(α)]′X ′H(α)X[β − b(α)] + s(α)}

)

,

where

b(α) = [X ′H(α)X]−1X ′H(α)y,

s(α) = y′[H(α) − H(α)X(X ′H(α)X)−1X ′H(α)]y.
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Prior density

Conditionally on α, the model can be transormed into a
homosckedastic one, and results for this case can be
applied.

For this factorize the prior as

ϕ(β, σ2, α) = ϕ(β|σ2) ϕ(σ2) ϕ(α),

and choose a NIG prior density for σ2 and β:
σ2 ∼ IG2(ν0, s0), β|σ2 ∼ N(β0, σ

2M−1
0 ),

or a Normal for β times a non-informative prior for σ2.

The prior on α can be chosen as one wishes since
numerical integration wrt this parameter must be used.
An easy to use flat prior is ϕ(α) ∝ 1 if α ∈ A.
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Posterior density ofβ and σ2|α

If the prior is NIG:

β|α, d ∼ tk(β∗(α), s∗(α),M∗(α), ν∗)

σ2|α, d ∼ IG2(ν∗, s∗(α)), where

M∗(α) = M0 + X ′H(α)X

β∗(α) = M−1
∗ (α)[M0β0 + X ′H(α)y]

s∗(α) = s0 + s(α) + b′(α)X ′H(α)Xb(α) − β∗(α)′M∗(α)β∗(α)

ν∗ = ν0 + T.

Proof: multiply the likelihood and the prior of β and σ2,
express this product as the kernel of a NIG density and
apply the properties of the NIG.
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Marginal posterior densities

Method: integrate likelihood times prior wrt to β and σ2.
Since this product depends on β and σ2 through the NIG
kernel, the result is:
the integral of the NIG kernel × |H(α)|1/2 (from the
likelihood function) × the prior density of α:

ϕ(α|d) ∝ |H(α)|1/2 |M∗(α)|−1/2 s∗(α)−(ν∗−k)/2 ϕ(α).

Then one can marginalize β|α, d and its moments wrt to
α:
ϕ(β|d) ∝

∫
ϕ(β|α, d)κ(α|d)dα, and

E(β|d) =
∫

β∗(α)κ(α|d)dα/
∫

κ(α|d)dα since
β∗(α) = E(β|α, d).

Same method for getting σ2|d and its moments.
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How to integrate?

If ℓ (dimension of α) ≤ 2: deterministic integration.
If 1 < ℓ < 10, griddy-Gibbs on α|d. Very convenient if
constraints on α.
If ℓ ≥ 10, importance sampling or MH sampling. Difficult if
constraints on α.

NB: since ϕ(α|β, σ2, d) is not better known than ϕ(α|d), a
Gibbs sampler cycling between α|β, σ2, β|α, σ2, σ2|β, α is
not particularly interesting!

For an application: see BLR, p 202-203 (see next page).

For GARCH models: see sections 7.3 and 7.4, and
paper of Bauwens and Lubrano (1998) in the
Econometrics Journal.
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Application

yt = household t electricity consumption,
xt = constant, 10 dummies for ownership of specific
electric appliances, socio-economic variables (income,
household size, house size...), and interaction variables.

Data for 174 households.

Coefficient of a dummy measures electricity
consumption due to corresponding appliance. Should be
positive: positivity constraints on dummy coefficients.

Heteroskedasticity due to variability of number of
appliances zt owned by each household: σ2

t = σ2zα
t .
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3.2 Regression with conjugate prior

3.3 Partially linear model

3.4 Regression with non-conjugate prior
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Autocorrelation

yt = x′
tβ + ut, ρ(L)ut = ǫt ∼ I.N(0, σ2), t = 1, . . . , T + p

where ρ(L) = 1 − ρ1L − ρ2L
2 − . . . − ρpL

p.

We assume that p initial observations (y1−p . . . y−1 y0) are
used as initial conditions.

Equivalently: ρ(L)yt = ρ(L)x′
tβ + ǫt.

The model is non-linear in the parameters.
For example, with xt scalar and ρ(L) = 1 − ρL, this is
yt = ρyt−1 + xtβ + xt−1ρβ + ǫt.

Let ρ = (ρ1 ρ2 . . . ρp). Given ρ, the model is linear in β, and
given β it is linear in ρ. In each case, one can apply the
results for linear regression with a conjugate prior.
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Prior and posterior

Hence a convenient way to factorize the prior is

ϕ(β, ρ, σ2) = ϕ(β|σ2) ϕ(ρ|σ2) ϕ(σ2),

where β|σ2 ∼ Nk(β0, σ
2M−1

0 ), ρ|σ2 ∼ Np(ρ0, σ
2P−1

0 ), and
σ2 ∼ IG2(ν0, s0). This implies that (β, ρ, σ2) ∼ NIG.

In this setup, we can show that:

β|ρ, σ2, d ∼ Nk(β∗(ρ), σ2M∗(ρ)−1)

ρ|β, σ2, d ∼ Np(ρ∗(β), σ2P∗(β)−1),

σ2|β, ρ, d ∼ IG2(ν∗, s∗(β, ρ)).

so that a Gibbs sampler can be applied.
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Details

For example, to obtain β|ρ, σ2, d, write the model as
yt(ρ) = xt(ρ)′β + ǫt where yt(ρ) = ρ(L)yt and xt(ρ) = ρ(L)xt,
and apply the formulas for the homoskedastic linear
regression model. Hence, M∗(ρ) = M0 + X(ρ)′X(ρ)

β∗(ρ) = M∗(ρ)−1[M0β0 + X(ρ)′y(ρ)],
where X(ρ) is the matrix with xt(ρ)′ as t-th row, and y(ρ)

is the vector with yt(ρ) as t-th element.

Likewise, to obtain ρ|β, σ2, d, write the model as
yt(β) = xt(β)′ρ + ǫt where yt(β) = yt − x′

tβ and
xt(β) = [yt−1(β) yt−2(β) . . . yt−p(β)].
Stack yt(β) in the vector y(β) and xt(β)′ in X(β), and get
P∗(β) and ρ∗(β).
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Remarks

If ρ(L) has a unit root, i.e. ρ(1) = 0, the matrix X(ρ)′X(ρ)

is singular. This creates a problem in the Gibbs sampler
when ρ is close to the value ρ(1) = 0. Solutions:
-be informative on the constant term;
-work with data in deviation from means;
-exclude a priori ρ(1) smaller than a threshold.

The prior may incorporate an indicator function that ρ is
in the region of stationarity. Then the posterior is
truncated to that region. In the Gibbs algorithm, draws
that are not in the region of stationary values should be
rejected.
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IID Student errors

yt = x′
tβ + ǫt, ǫt ∼ I.t(0, 1, ν−1σ−2, ν), t = 1, . . . , T ;

E(ǫt) = 0 if ν > 1, Var(ǫt) = νσ2/(ν − 2) if ν > 2.
If ν → ∞,we are back to the Gaussian case.
If ν is small, we have thick tails.

Likelihood function:
L(β, σ2, ν|d) ∝

∏T
t=1

Γ((ν+1)/2)
Γ(ν/2)

(
νσ2
)−1/2[

1 + (yt−x′

tβ)2

νσ2

]−(ν+1)/2.

A simple prior: ϕ(β, σ2, ν) = ϕ(β|σ2)ϕ(σ2)ϕ(ν), with
ϕ(β) ∝ 1 or N(β0, σ

2M−1
0 ), ϕ(σ2) an IG2(ν0, s0) and ϕ(ν) to

be specified.

Posterior not so simple! Full conditional densitites
ϕ(β|σ2, ν, d), ϕ(σ2|β, ν, d), ϕ(ν|β, σ2, d) are not known. MH
steps within Gibbs do not seem easy.
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A solution: data augmentation

Write yt = x′
tβ + λtut, ut ∼ I.N(0, σ2), and assume

λ2
t ∼ I.IG2(ν, ν) and independent of ut. Then:

λtut|λt ∼ N(0, σ2λ2
t ) and λ2

t ∼ IG2(ν, ν) imply that
λtut ∼ t(0, ν, σ−2, ν) ≡ t(0, 1, ν−1σ−2, ν). Furthermore,
{ǫt = λtut} is an independent sequence.

Let λ = (λ1 λ2 . . . λT ). We consider that β, σ2, ν and λ are
the parameters of the model. Then a Gibbs sampler is
feasible, cycling between
β|σ2, ν, λ, d ∼ Nk(β∗(λ), σ2M∗(λ)−1),
σ2|β, ν, λ, d ∼ IG2(ν∗, s∗(β, λ)),
ν|β, σ2, λ, d a density that can be simulated,
λ|β, σ2, ν, d ∼

∏T
t=1 IG2() (hence each λt can be simulated

independently of the other).
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λ known

Write yt/λt = (x′
t/λt)β + ut. This is a homoskedastic

Gaussian regression model. Stacking the yt/λt in the
vector yλ and the x′

t/λt in the matrix Xλ and applying the
results for the Gaussian regression under a conjugate
prior gives the conditional densities defined on the
previous slide, with:

M∗(λ) = M0 + X ′
λXλ

β∗(λ) = M∗(λ)−1(M0β0 + X ′
λXλβ̂λ)

ν∗ = ν0 + T s∗(β, λ) = s∗(λ) + [β − β∗(λ)]′M∗(λ)[β − β∗(λ)]

where β̂λ = (X ′
λXλ)−1X ′

λyλ, and
s∗(λ) = s0+y′λMXλ

yλ+β′
0M0β0+β̂′

λX ′
λXλβ̂λ−β′

∗(λ)M∗(λ)β∗(λ).

Note that if λ is known, nothing depends on ν.
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Full conditional of λ

Write the model as (yt − x′
tβ)/σ = ỹt = λtũt where

ũt ∼ I.N(0, 1). Stack the ỹt in the vector ỹ.
The likelihood function, proportional to the joint density
of ỹ and λ, is built as
∏T

t=1 f(ỹt|λ2
t )f(λ2

t ) ∝
∏T

t=1

(
λ2

t

)−1/2
exp

(
− ỹ2

t

2λ2

t

)(
λ2

t

)−(ν+2)/2
exp

(
− ν

2λ2

t

)
=

∏T
t=1(λ

2
t )

−(ν+3)/2 exp
(
− ν+ỹ2

t

2λ2
t

)

Viewing this function as a function of λ given the data
and the other parameters, it is clear that this is a product
of independent IG2(ν + 1, ν + ỹ2

t ) densities, one for each
λt.
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Full conditional of ν

It is equal to the prior ϕ(ν), times the likelihood of ỹ and
λ, where we keep only all that depends on ν:
ϕ(ν|β, σ2, λ, d) ∝
ϕ(ν)

∏T
t=1

[
1

Γ(ν/2)ν
ν/2
(
λ2

t

)−(ν+2)/2
exp

(
− ν

2λ2
t

)]
.

Since this is a univariate density, one can compute its
cdf by deterministic integration. One can then draw a
random value by generating u ∼ U(0, 1) and computing
the u%-quantile numerically, i.e. solving u = CDF (ν) for
ν. The CDF of ν is different in each iteration of the Gibbs
sampler since it depends on λ.

Note that given λ, ν is independent of β and σ2.
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What prior for ν?

It is difficult to discriminate between different large
values of ν from the data. Intuition: whether ν = 30 or 40,
the Student density is close to the Gaussian.

The posterior of ν when ϕ(ν) ∝ 1 has a long thick tail for
‘large’ values of ν (say ν > 20). Actually, it does not tend
to 0 as ν tends to ∞, hence is not integrable over (0,∞)!
Solutions:
-truncate ν between e.g. a = 0.05 and b = 30;
-use a prior that tends quickly enough to 0 when ν tends
to ∞, so that the likelihood is dominated by the prior:
ϕ(ν) ∝ [1 + ν2]−1 if ν > 0 (half Cauchy) is sufficient, but
ϕ(ν) ∝ 1/ν is not, see Bauwens and Lubrano (1998,
Econometrics Journal). An exponential density is
another possible choice.
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VAR models

We write a VAR model for the vector xt ∈ Rn as

A(L)xt = c + ǫt (1)

where A(L) = In − A1L − A2L
2 − · · · − ApL

p

is a polynomial of degree p in the lag operator,
Ai are square matrices (n × n) of parameters,
c ∈ Rn is a vector of intercepts, and ǫt ∼ I.Nn(0,Σ).

No restrictions are imposed on the parameters c and Ai,
implying that all equations of the system have the same
explanatory variables (p lags of each variable in xt).

We can include other terms like a trend, dummy and
other explanatory variables.
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VAR as multivariate regression model

The VAR system can be written as a multivariate
regression model:

yt = B′zt + ǫt, ǫt ∼ INn(0,Σ) (2)

where yt, zt, and B are of dimension n × 1, k × 1, and
k × n, respectively.

The VAR model (1) corresponds to

yt = xt

zt = (1 x′
t−1 x′

t−2 . . . x′
t−p)

′

B′ = (c A1 A2 . . . Ap)

k = (n × p) + 1.

(3)
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Matrix form of the model

The matrix version of (2) for T observations (plus p initial
ones in the VAR case) is obtained by transposing (2) and
stacking:

Y = ZB + E, E ∼ MNT×n(0,Σ ⊗ IT ) (4)

where

Y =









y′1
y′2
. . .

y′T









, Z =









z′1
z′2
. . .

z′T









, E =









ǫ′1
ǫ′2
. . .

ǫ′T









.

MN denotes a matricvariate normal distribution, which is
a Normal distribution for a random matrix.
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The matricvariate Normal distribution/1

Let X denote a p × q random matrix and
vec X its pq-dimensional column expansion.

X is said to have a matricvariate Normal distribution with
parameters M ∈ IRp×q

, P ∈ Cp, and Q ∈ Cq, if and only if
vec X has a multivariate Normal distribution with
parameters vec M and Q ⊗ P , i.e.

X ∼ MNp×q(M,Q ⊗ P ) ⇔ vec X ∼ Npq(vec M,Q ⊗ P ).

Therefore, its density function is given by

fp×q
MN (X|M,Q ⊗ P ) = [(2π)pq |P |q |Q|p]−1/2

× exp{−1
2 tr[Q−1(X − M)′P−1(X − M)]}.

(5)
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The matricvariate Normal distribution/2

The use of the trace operator in (5) originates from

[vec (X − M)]′(Q ⊗ P )−1[vec (X − M)]

= Σq
i=1Σ

q
j=1q

ij(xi − mi)
′P−1(xj − mj)

= tr[Q−1(X − M)′P−1(X − M)],

where xi − mi denotes the ith column of X − M and and
qij the (i, j)th element of Q−1.

All the properties of the multivariate Normal distribution
apply to the matricvariate normal distribution through the
vec operator. For details, see BLR, Appendix A.2.3.
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The likelihood function

Using (4) and applying (5):

L(B,Σ|d) ∝ |Σ|−T/2 exp{−1
2 tr Σ−1(Y − ZB)′(Y − ZB)}

= |Σ|−T/2 exp{−1
2 tr Σ−1[S + (B − B̂)′Z ′Z(B − B̂)]}.

(6)

where d stands for (Y, Z), and

B̂ = (Z ′Z)−1Z ′Y

S = Y ′MZY = Y ′Y − Y ′Z(Z ′Z)−1Z ′Y.
(7)

We assume that T > k + n + 1.

As usual, we use kernels, i.e. we do not write the
useless constants in the density.
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Non-informative prior (NIP)

It is usually defined as

ϕ(B,Σ) ∝ |Σ|−(n+1)/2. (8)

This can be interpreted as uniform on all the elements of
B on IRkn, and uniform on the elements of Σ taking into
account that Σ is a covariance matrix (thus symmetric
and positive-definite).

We shall see that |Σ|−(n+1)/2 can be seen as the limit of a
proper distribution.

The prior is ‘improper’: it does not integrate to 1.
However this does not prevent the posterior to be
integrable (or proper).
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Posterior with NIP

By multiplication of (8) and (6), we get the posterior
kernel, and we can see that its corresponds to a MN for
B given Σ and an inverted Wishart density for Σ:

ϕ(B,Σ|Y, Z) ∝ |Σ|−(T+n+1)/2

exp{−1
2 tr Σ−1[S + (B − B̂)′Z ′Z(B − B̂)]}

∝ fk×n
MN (B|B̂,Σ ⊗ (Z ′Z)−1)
︸ ︷︷ ︸

ϕ(B|Σ,d)

fn
IW (Σ|T − k, S)
︸ ︷︷ ︸

ϕ(Σ|d)

.

(9)

fn
IW (Σ|T − k, S) denotes an inverted Wishart density for

the matrix Σ, with parameters S and T − k. Hence

E(Σ|d) =
1

T − k − n − 1
S if T > k + n + 1.
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The inverted Wishart distribution/1

A random matrix Σ ∈ Cq = {Σ | Σ is q × q and PDS} has
an inverted Wishart distribution with parameters S ∈ Cq

and ν > q − 1, i.e. Σ ∼ IWq(ν, S), if its density function is
given by

f q
IW (Σ|ν, S) = C−1

IW (ν, S; q) |Σ|− 1

2
(ν+q+1) exp

[

−1

2
tr(Σ−1S)

]

,

(10)

where

CIW (ν, S; q) = 2
1

2
νq π

1

4
q(q−1)

q
∏

i=1

Γ

(
ν + 1 − i

2

)

|S|− 1

2
ν . (11)

For q = 1, Σ and S are scalar and the distribution is
equivalent to the inverted-gamma-2 density.
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The inverted Wishart distribution/2

For ν > q + 1, the expectation of Σ is given by

E(Σ) =
1

ν − q − 1
S. (12)

If Σ11 is extracted from Σ ∼ IWq(ν, S) along its first q1

rows and columns, the marginal distribution of Σ11 is
IWq1

(ν − q2, S11) where S11 is extracted from S along its
first q1 rows and columns and q2 = q − q1.

For other properties of the inverted Wishart distribution,
see BLR, Section A.2.6.

If Σ ∼ IWq(ν, S), the distribution of Σ−1 is said to be a
Wishart distribution with parameters ν and S..
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Posterior with NIP

The posterior density of B and Σ can also be factorized
as

ϕ(B,Σ|d) = ϕ(B|d)ϕ(Σ|B, d)

where

B|d ∼ Mtk×n(B̂, Z ′Z, S, T − k)

Σ|B, d ∼ IWn(T, (Y − ZB)′(Y − ZB))
(13)

The marginal distribution of B is a matricvariate-Student
(or matricvariate-t). This implies that

E(vec B|d) = vec B̂ if T > k + n,

Var(vec B|d) = 1
T−k−n−1S ⊗ (Z ′Z)−1 if T > k + n + 1.

(14)
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Direct sampling under NIP

For computing posterior features that are not known
analytically (such as impulse responses, eigenvalues...),
direct sampling of the posterior can be used to generate R

draws of B and Σ:

1. Set r = 1.

2. Based on based on (9) draw successively
Σ(r) from IWn(T − k, S) and
B(r) from the MN(B̂,Σ(r) ⊗ (Z ′Z)−1).

3. Set r = r + 1 and go to step 2 unless r > R.

4. Compute what you are interested in from the R draws.
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Gibbs sampling for posterior under NIP

Another (less efficient) option is a Gibbs sampling algorithm
to generate R draws from the posterior of B and Σ after R0

warming-up draws:

1. Choose an initial value Σ(0) (e.g. S/(T − k − n − 1)).

2. Set r = 1.

3. Draw successively B(r) from

MNk×n

(

B̂,Σ(r−1) ⊗ (Z ′Z)−1
)

and Σ(r) from

IWn(T, (Y − ZB(r))′(Y − ZB(r))).

4. Set r = r + 1 and go to step 3 unless r > R0 + R.

5. Discard the first R0 values of B(r) and Σ(r). Compute
what you are interested in from the last R draws.
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Conjugate prior

The conjugate prior is a MN for B|Σ times an IW for Σ:
- B|Σ ∼ MNk×n(B0,Σ ⊗ M−1

0 ),
- Σ ∼ IWn(ν0, S0).

Thus, assuming ν0 > n − 1,
Var(vec B) = 1

ν0−n−1S0 ⊗ M−1
0 . Hence, the prior

covariance matrix of Bj, the coefficients of equation j

(they are stacked in column j of B), is
Var(Bj) = 1

ν0−n−1S0,jjM
−1
0 .

Thus, the prior covariance of the coefficients of two
different equations are proportional to each other and
have the same correlation structure.
This is very restrictive, hence the CP is never used.
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Extended conjugate prior

An extended conjugate prior has been defined in the
literature (see references). It avoids the restriction
explained above. However, as the CP, it requires to be
informative on Σ in order to be informative on B (as in
the single equation case).

It is much easier, for eliciting the prior on B, to remain
non-informative (or diffuse) on Σ, with ϕ(Σ) ∝ |Σ|−(n+1)/2.
Notice that this is the limit of the conjugate IW prior
obtained by setting S0 = 0 and ν0 = 0 (not ν0 = n − 1).

Then one can use "any" desired (non-conjugate) prior on
B (or some elements of B), and use the same Gibbs
sampler as sketched for the NIP case, with a MH step to
draw B if the conditional density of B|Σ, d cannot be
simulated directly.
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Normal diffuse prior

If the prior on vec B is Normal, then the conditional
density of B|Σ, d is Normal and is easy to simulate.

Indeed, let vec B ∼ Nh(vec B0,M
−1
0 ) where h = k × n is

the dimension of vec B. Then, assuming the diffuse prior
for Σ, the posterior density of B and Σ is proportional to

|Σ|−(T+n+1)/2 exp{−1
2 tr(Σ−1S)}

exp{−1
2(vec B − vec B̂)′(Σ−1 ⊗ Z ′Z)(vec B − vec B̂)}

exp{−1
2(vec B − vec B0)

′M0(vec B − vec B0)}
(15)

By adding the arguments of the two exp functions and
combining the two quadratic forms in vec B into a single
quadratic form, one can show that vec B|Σ, d is Normal.
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Density ofB|Σ, d

The result is

vec B|Σ, d ∼ Nh(vec B∗,M
−1
∗ ) (16)

where

M∗ = Σ−1 ⊗ Z ′Z + M0

vec B∗ = M−1
∗
[

(Σ−1 ⊗ Z ′Z)vec B̂ + M0vec B0

] (17)

The mean and the covariance matrix of vec B depend on
Σ through the likelihood contribution.

Notice that if M0 = 0, the prior on B is non-informative
(then B0 can be set to 0), and then B|Σ, d is the same as
in (9).
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Density ofΣ|B, d

In (15), the first three factors only depend on Σ, hence
they correspond to the kernel of Σ|B, d. The kernel of the
posterior can be expressed as

|Σ|−(T+n+1)/2 exp{−1

2
tr
[
Σ−1(Y − ZB)′(Y − ZB)

]
}.

Hence, it is clear that

Σ|B, d ∼ IWn(T, (Y − ZB)′(Y − ZB)). (18)

This is the same as in (14).
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Gibbs sampling under Normal-diffuse prior

For computing posterior features, here is a Gibbs sampling
algorithm to generate R draws from the posterior of B and Σ

(after R0 warming-up draws):

1. Choose an initial value Σ(0) (e.g. S/(T − k − n − 1)).

2. Set r = 1.

3. Draw successively vec B(r) from the Normal density in
(16) where vec B∗ and M∗ are computed with Σ = Σ(r−1),
and Σ(r) from IWn(T, (Y − ZB(r))′(Y − ZB(r))).

4. Set r = r + 1 and go to step 3 unless r > R0 + R.

5. Discard the first R0 values of B(r) and Σ(r). Compute
what you are interested in from the last R draws.
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Non-Normal prior on vec B

If a non-Normal prior ϕ(vec B) is used, the conditional
posterior B|Σ, d is proportional to

|Σ|−(T+n+1)/2 ϕ(vec B)

exp{−1
2(vec B − vec B̂)′(Σ−1 ⊗ Z ′Z)(vec B − vec B̂)}

and not a known density that can be simulated directly.

The previous Gibbs algorithm must be adapted, by
simulating vec B|Σ = Σ(r−1) using a MH step.

The proposal density can be constructed by
approximating ϕ(vec B) by a Normal density, and using
(16) as proposal. If ϕ(vec B) is far from being Normal, a
better proposal should be designed (e.g. a mixture of
Normal densities).
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Origin

Litterman and Sims have defined a prior for the VAR
model (1), see e.g. Doan, Litterman, and Sims (1984) for
details.

It is called the ‘Minnesota’ (or ‘Litterman’) prior in the
literature since Litterman wrote his doctoral dissertation
at the University of Minnesota.

This prior is informative on all the coefficients of the Ai

matrices, and non-informative on the other parameters.
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Prior expectation

If xt is a set of series in levels, the prior expectation is
that the VAR system consists of n random walks, i.e. the
prior mean of Ai is zero for i ≥ 2, and the prior mean of
A1 is equal to In (the identity matrix).

For quarterly data with a seasonal pattern, it is the prior
mean of A4 that should be an identity matrix.

If xt is the first difference of a set of series, there should
be no identity matrix in the prior mean, only zero prior
means.
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Prior covariance matrix/1

The prior covariance matrix of all the parameters in the
Ai matrices is diagonal.

For a given equation of the VAR, the standard deviation
of the corresponding diagonal element of A1 is a fixed
value (say λ), meaning that one is of course not sure that
this parameter is equal to one.

The standard deviation of the coefficient of lag i of the
same variable is equal to λ/i, reflecting the idea that the
larger the lag, the more likely the coefficient is to be
close to zero.
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Prior covariance matrix/2

The standard deviations of the coefficients of the lags of
every other variable in the equation have the same
decreasing pattern.

For lag i of the variable xj in equation k, the standard
deviation is λθσk/iσj, where θ is a scalar between 0 and 1

to incorporate the idea that the lags of xj (j 6= k) are
more likely to have zero coefficients than the lags of xk in
equation k.

The ratio σk/σj of the standard deviations of the error
terms is a way to take account of the difference in the
scale of the different variables.

For a given equation, the choice of the prior moments
requires two values, λ and θ, which can be the same for
all the equations.
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Example

For the first equation of a bivariate VAR with two lags,
the prior means and standard deviations are given in
parentheses:

x1,t = α11x1,t−1 + α12x1,t−2

(1, λ) (0, λ/2)

+ β11x2,t−1 + β12x2,t−2 + ǫ1,t.

(0, θλσ1/σ2) (0, θλσ1/2σ2)
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Minnesota prior as Normal prior/1

The Minnesota prior is a Normal distribution with the
described mean and diagonal covariance matrix:

vec B|σ1, σ2, . . . , σn ∼ Nh(vec B0
︸ ︷︷ ︸

β0

,M−1
0 ) (19)

where σi (i = 1 to n) is the square root of the ith diagonal
element of the covariance matrix Σ.

Note that M−1
0 depends on these parameters. To make

this prior easy to specify, and the posterior sampling
easy, one can set σi equal to the ML estimate of the i-th
equation of the VAR. Then, one can use the Gibbs
sampling algorithm sketched for the Normal-diffuse prior.
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Minnesota prior as Normal prior/2

The non-zero diagonal elements of M0 are the inverses
of the variances of the coefficients on which one is
informative (as described above). Only two scalars have
to be chosen: λ and θ.

The zero diagonal elements of M0 correspond to the
parameters on which one is not informative (like the
intercepts), and the corresponding elements of β0 are set
to zero.

So β0 consists of ones for the diagonal elements of A1

and zeros everywhere else.
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Impact of the Minnesota prior

The influence of the Minnesota prior on the posterior
results of the VAR coefficients is twofold:

1) The precision of the ‘estimates’ is improved because
of the adding up of prior and sample precisions.

2) The posterior means of the coefficients on which the
sample is weakly informative are shrunk towards the
prior means (most of them being null), and away from
the least squares (LS) estimates (which are the posterior
means under the diffuse prior).

In VAR models, it is customary to find LS estimates
which are very imprecisely determined, so the prior may
help to shrink these coefficients to less ‘extreme’ values
than the LS values.
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Impact of the Minnesota prior

This usually helps to improve the predictions of the
model. For a set of macroeconomic series, the VAR
model with the Minnesota prior has indeed been found to
be often a better prediction tool than the VAR model
without the prior (i.e. least squares predictions); see
Litterman (1986) for an account of such comparisons.
Anoher interesting paper in that respect is that of
Kadiyala and Karlsson (1997).
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Exclusion restrictions in VAR

One may wish to impose that the explanatory variables
are not the same in all equations. Examples are
-Granger non-causality restrictions (lags of one variable
excluded in some equations);
-Inclusion of a linear trend or seasonal dummy variables
in some equations but not in others.

Such exclusion restrictions complicate the derivation of
the posterior results even under the diffuse prior (8),
where B is replaced by Bc (the constrained B):

ϕ(Bc,Σ) ∝ |Σ|−(n+1)/2. (20)
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Posterior under NIP in restricted VAR

The posterior density is still like in the first line of (9):

ϕ(Bc,Σ|Y, Z) ∝ |Σ|−(T+n+1)/2

exp{−1
2 tr Σ−1[S + (Bc − B̂)′Z ′Z(Bc − B̂)]}

(21)

The conditional posterior of Bc|Σ implied by (21) is not in
general a MN distribution with expectation B̂ and
covariance matrix Σ⊗ (Z ′Z)−1 as in the second line of (9).

We know the posterior kernel of Bc|Σ but we cannot
simulate it directly. For example, rejection sampling from
the unconstrained MN in (9) is not feasible: with exact
restrictions, all draws will be rejected.
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Posterior under NIP in restricted VAR

However, the conditional posterior of Σ|Bc remains an
inverted Wishart density.

Neither direct sampling nor Gibbs sampling as defined in
Section 3.1 can be used.

One solution is to replace the sampling of B|Σ as MN in
the unconstrained model by a MH step for Bc|Σ in the
constrained model. This requires to design a good
enough proposal density.

Another approach is based on writing the VAR subject to
exclusion restrictions as a system of seemingly
unrelated regression equations (SURE).
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SURE system/1

A SURE system is a set of regression equations,
possibly with different regressors, whose error terms are
correlated. It can be written as

Yi = Ziβi + Ei, i = 1, . . . , n (22)

where Yi, Zi, and βi are of dimension T × 1, T × ki, and
ki × 1 respectively.

In compact matrix format, we write

y = Zβ + ǫ (23)

The distribution of the Tn × 1 vector ǫ is assumed to be
NTn(0,Σ ⊗ IT ); this is actually the same hypothesis as in
(4) since ǫ = vec E.
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SURE system/2

y =









Y1

Y2
...

Yn









β =









β1

β2
...

βn









ǫ =









E1

E2
...

En









(24)

and

Z =










Z1 0 . . . 0

0 Z2 . . . 0
...

...
...

0 0
... Zn










(25)
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SURE system/3

Another useful writing of the SURE system (23) is

Y = WBc + E (26)

with Y and E as in (4), W = (Z1 Z2 . . . Zn) and

Bc =










β1 0 . . . 0

0 β2 . . . 0
...

...
...

0 0
... βn










(27)

The matrix W is not of full column rank if some equations
share the same explanatory variables (e.g. a constant).
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Constrained VAR as SURE

An example of a bivariate VAR with one lag and
non-causality of x2 for x1 that can be put easily in the form of
(23) and (26) is:

x1,t = β11x1,t−1 + c1 + ǫ1,t

x2,t = β21x1,t−1 + β22x2,t−1 + c2 + ǫ2,t.

Thus
β1 = (β11 c1)

′,
β2 = (β21 β22 c2)

′,
Z1 has (x1,t−1 1) as its t-th row, and
Z2 has (x1,t−1 x2,t−1 1) as its t-th row.
So W = (Z1 Z2) has rank 3.
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Posterior density of SURE with NIP

Posterior marginal densities for the SURE system are
not available analytically, but the conditional posterior
densities of β|Σ and Σ|β are known.

Hence they can be used to define a Gibbs sampling
algorithm cycling between these two densities. See
Percy, D.F. (1992).

Bayesian Econometrics – p. 191/196



Conditional posterior densities

With the diffuse prior (20), which can be written as
ϕ(β,Σ) ∝ |Σ|−(n+1)/2 since β includes the unconstrained
parameters in Bc, the conditional posterior densities are:

β|Σ, d ∼ NK(β̂,
[
Z ′(Σ−1 ⊗ IT )Z

]−1
)

Σ|β, d ∼ IWn(T,Q)
(28)

where K =
∑n

i=1 ki and

β̂ =
[
Z ′(Σ−1 ⊗ IT )Z

]−1 Z ′(Σ−1 ⊗ IT )y

Q = (Y − WBc)
′(Y − WBc).

(29)

NB: If Z1 = Z2 = · · · = Zn = Z of (4) in the SURE formulation
(22), β̂ of (29) is equal to vec B̂ of (7).
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Proof of (28)

(23) is a linear regression model, so that

ϕ(β,Σ|d) ∝

|Σ|−(T+n+1)/2 exp
[
−1

2 (y −Zβ)′(Σ−1 ⊗ IT )(y −Zβ)
]

= |Σ|−(T+n+1)/2 exp −1
2

{[

s + (β − β̂)′Z ′(Σ−1 ⊗ IT )Z(β − β̂)
]}

where s = y′(Σ−1 ⊗ IT )y − β̂′Z ′(Σ−1 ⊗ IT )Zβ̂.

The posterior conditional density of β|Σ follows directly.

To obtain the density of Σ|β, we use (26), so that

ϕ(β,Σ|d) ∝ |Σ|−(T+n+1)/2 exp
[
−1

2 tr Σ−1(Y − WBc)
′(Y − WBc)

]
,

which is recognized as the kernel of an IW density.
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