ECONOMETRÍA II:

ECONOMETRÍA DE SERIES TEMPORALES

Modelación con ARMA

Método Box-Jenkins:

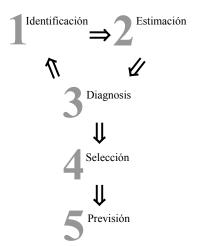
- Un libro que ha tenido una gran influencia es el de Box y Jenkins (1976): *Time Series Analysis: Forecasting and Control.* San Fransisco: Holden-Day
- En este libro se propone un método de modelación con modelos ARMA que ha sido y sigue siendo muy utilizado
- Este método se conoce como el *método Box-Jenkins* ("Box-Jenkins methodology")
- *Nota*: Casi siempre se trata de modelos ARMA cuando se habla del método Box- lenkins

Método Box-Jenkins (cont.):

- En resumen, el método Box-Jenkins tiene como objetivo encontrar un (o varios) modelo(s) *simple(s)*, es decir, un modelo con pocos parámetros ("principle of parsimony") y adecuado, y el método tiene 4 pasos:
 - 1. *Identificación*. Consiste en transformar los datos, si es necesario, para que la hipótesis de estacionariedad sea adecuada, y en elegir los ordenes p,q
 - 2. Estimación. Consiste en estimar el modelo ARMA(p, q)
 - 3. *Diagnosis*. Consiste en comprobar que las propriedades empíricas corresponden a las hipótesis del modelo
 - 4. Predicción. Utilizar el modelo para predecir

Método Box-Jenkins (cont.):

• Versión "moderna" del método Box-Jenkins:



Identificación:

- Muchas veces, aplicando el operador diferencia se obtiene una serie estacionaria
- Terminología: Una serie $\{y_t\}$ es integrada ("integrated") de orden d si $\Delta^d y_t$ es una serie estacionaria. También se dice que d es el orden de integración ("order of integration")
- Notación: $y_t \sim I(d)$ y ARIMA(p, d, q), donde $d \geq 0$
- Si d no es un número entero, por ejemplo, si d=0.6 o si d=2.6, decimos que el orden d es fraccional ("fractional integration")
- *Nota:* En este curso no vamos a ver integración fraccional, siempre vamos a tratar las series como integradas de orden entero, es decir, de orden $0, 1, 2, \ldots$

Ejemplos:

```
ightarrow Si y_t no es estacionaria, pero \Delta y_t lo es, entonces escribimos y_t \sim I(1)
```

 \rightarrow Si ni y_t , ni Δy_t son estacionarias, pero $\Delta^2 y_t$ lo es, entonces escribimos $y_t \sim I(2)$

:

etc.

 \rightarrow Si y_t ya es estacionaria, entonces escribimos $y_t \sim I(0)$

- Como encontramos el orden de integración adecuado?
- Para apoyar o rechazar una hipótesis de orden d=1, por ejemplo, podemos utilizar varios tipos de información:
 - (a) Inspección visual de gráficos
 - (b) Propiedades y tests estadísticos
 - (c) Sentido común
 - (d) Teoría
- *Nota*: Hay casos en los que los investigadores no están de acuerdo. Por ejemplo, hay casos en que no están de acuerdo de si $p_t \sim I(1)$ o si $p_t \sim I(2)$, donde p_t denota un índice de precios en logaritmos

- (a) Inspección visual de gráficos:
 - → Es la serie creciente durante toda la muestra?
 - → Oscila la serie alrededor de un valor constante?
 - → Es la magnitud de la oscilación constante?
 - → Hay puntos de cambio estructurales?

- (b) Propiedades y tests estadísticos
 - → Los tests estadísticos de estacionariedad los vamos a ver más tarde (Tema VII; contrastes de raíz unitaria)
 - → Qué son las propiedades de la FAC ("ACF")?
 - → Qué son las propiedades de la FACP ("PACF")?

- ullet Nota: Aunque la FAC y la FACP pueden ser útiles para determinar el orden de integración, los usamos sobre todo para determinar p y q
- Recordamos: La FAC es la serie $\{\rho_k\}$, donde $\rho_k = \frac{\gamma_k}{\gamma_0}$
- Para estimar ρ_k utilizamos el estimador

$$\hat{\rho}_k = \frac{\hat{\gamma}_k}{\hat{\gamma}_0}$$

donde

$$\hat{\gamma}_k = \frac{1}{T} \sum_{t=k+1}^T (y_t - \hat{\mu})(y_{t-k} - \hat{\mu})$$
 $k = 0, 1, ..., T - 1$

$$\hat{\mu} = \frac{1}{T} \sum_{t=1}^T y_t$$

• Prueba de la Q:

$$H_0: \rho_i = 0 \text{ para } i = 1, \dots, k$$

 H_1 : al menos un $ho_i
eq 0$

Box-Pierce :
$$Q = T \sum_{i=1}^{k} \hat{\rho}_i \sim \chi^2(k)$$

Ljung-Box :
$$Q = T(T+2)\sum_{i=1}^{k} \frac{\hat{\rho}_i^2}{T-k} \sim \chi^2(k)$$

• *Nota*: La prueba de Ljung-Box es una modificación de Box-Pierce y mejor en muestras pequeñas

• El caso MA(q). Si, aproximadamente, $\{\epsilon_t\} \sim N(0, \sigma^2)$:

$$Var(\hat{
ho}_k)=rac{1}{T}(1+2\sum_{j=1}^{k-1}\hat{
ho}_k^2), ext{ para todo } k>q$$

ightarrow Rechazamos la hipótesis nula $ho_k=0$ si $|\hat{
ho}_k|>1.96\cdot\sqrt{Var(\hat{
ho}_k)}$. Recuerda: 5% \Rightarrow 1.96 desviaciones típicas

• Recordamos:

 \rightarrow AR(p): ρ_k decae (por ejemplo, para un AR(1) tenemos que $\rho_k = \phi_1^k$)

$$\rightarrow$$
 MA(q): $\rho_k = 0$ para todo $k > q$

• Definición: Función de autocorrelación parcial (FACP). La autocorrelación parcial entre y_t y y_{t-k} es la correlación entre y_t y y_{t-k} menos la parte explicada por $y_{t-1}, y_{t-2}, \dots, y_{t-k+1}$:

$$\rho_k^* = Corr[y_t - E(y_t|y_{t-1}, \dots, y_{t-k+1}), y_{t-k}]$$

donde $E(y_t|y_{t-1},\ldots,y_{t-k+1})$ es el predictor de mínimos cuadrados de y_t respecto a $y_{t-1},y_{t-2},\ldots,y_{t-k+1}$, y donde $y_t-E(y_t|y_{t-1},\ldots,y_{t-k+1})$ es el residuo

- La FACP puede ser útil para eligir el orden p
- Por ejemplo, si estimamos un AR(1) pero una estructura AR(2) es mas adecuada, entonces la FACP nos lo indicaría

• La regresión lineal

$$y_t = \hat{b}_0 + \hat{b}_1 y_{t-1} + \hat{b}_2 y_{t-2} + \dots + \hat{b}_k y_{t-k} + \hat{e}_t,$$

estimada con Mínimos Cuadrados Ordinarios (MCO), nos da una estimación de ρ_k^* : $\hat{b}_k = \hat{\rho}_k^*$

• Si, aproximadamente, $\hat{\rho}_k^* \sim N(0, \frac{1}{T})$:

$$H_0$$
: $\rho_k^* = 0$
 H_1 : $\rho_k^* \neq 0$

ightarrow Rechazamos H_0 si $|\hat{\rho}_k^*| > \frac{1.96}{\sqrt{T}}$

Recuerda: $5\% \Rightarrow 1.96$ desviaciones típicas

Estimación:

- Normalmente los modelos ARMA se estiman con Mínimos Cuadrados No Lineales (MCNL, "NLS") y Máxima Veromisilitud (MV, "MLE")
- Para ello se usan métodos numéricos
- Un criterio, entre otros, de éxito: Convergencia
- EViews utiliza MCNL: Se dice "Convergence achieved after x iterations", entonces hay convergencia
- Si se dice "Convergence not achieved after x iterations", entonces no hay convergencia
 - \rightarrow Cambiar criterios de convergencia; cambiar valores iniciales; cambiar orden p y q

Diagnosis:

- Objetivo: Determinar si el modelo ARMA es adecuado
- Es decir, comprobar que las hipótesis del modelo son adecuadas
- Es $\{\epsilon_t\}$ ruido blanco?
 - \rightarrow Comprueba que $Cov(\epsilon_t, \epsilon_{t-k}) = 0$: FAC de $\{\hat{\epsilon}_t\}$
 - ightarrow Comprueba que $\mathit{Var}(\epsilon_t)$ es constante: FAC de $\{\hat{\epsilon}_t^2\}$
 - ightarrow Si suponemos ruido blanco Gaussiano: Test de normalidad (Jarque-Bera)
- Son los parámetros estables?
 - → Tests de Chow, Test de Ramsey ("RESET")

Diagnosis (cont.):

• Prueba de la Q (Ljung-Box) aplicado a los residuos de un modelo ARMA(p, q):

$$H_0: \mathit{Corr}(\epsilon_t, \epsilon_{t-i}) = 0$$
 para $i = p + q, \dots, k$

 H_1 : al menos un $\mathit{Corr}(\epsilon_t,\epsilon_{t-i})
eq 0$

$$Q = T(T+2) \sum_{i=p+q}^{k} \frac{\hat{\rho}_{i}^{2}}{T-k} \sim \chi^{2}(k-p-q-1)$$

ullet Prueba de Durbin-Watson: Valor igual a 2 \Rightarrow $Cov(\epsilon_t,\epsilon_{t-1})=0$

Selección:

- Objetivo: Seleccionar un modelo (o algunos modelos) simple(s) entre varios candidatos adecuados
- Algunos métodos de selección son:
 - 1. Elegir el modelo o los modelos con menor "Akaike Information Criterion" ("AIC") o "Schwarz Bayesian Criterion" ("SBC")
 - 2. Modelación de lo simple a lo general ("simple to general")
 - 3. Modelación de lo general a lo simple ("general to simple")
 - 4. Combinación de 1., 2. y 3.

- Número de parámetros \uparrow , \Rightarrow suma de errores cuadrados \downarrow (mejor ajuste)
- ullet Si s=1+p+q (número de parámetros), busca modelo con menor:
 - \rightarrow "Akaike Information Criterion" (AIC): $\ln(\frac{1}{T}\sum_t \hat{\epsilon}_t^2) + 2 \cdot s$
 - \rightarrow "Schwarz Bayesian Criterion" (SBC): $\ln(\frac{1}{T}\sum_t \hat{\epsilon}_t^2) + \ln(T) \cdot s$
- Es decir, busca modelo con menor AIC o SBC
- \bullet SBC penaliza más el número de parámetros que AIC (porque ln T>2 cuando $\,T>7)$

- Nota: EViews utiliza versiones de AIC y SBC un poco diferentes
- Si / denota el logaritmo de la función de verosimilitud Gaussiana y s es el número de parámetros (ejemplo: en el caso ARMA(p, q) tenemos que s=1+p+q+1) entonces:
 - \rightarrow EViews AIC: $-2(\frac{1}{T}) + 2(\frac{s}{T})$
 - \rightarrow EViews SBC: $-2(\frac{1}{T}) + \frac{s \ln T}{T}$
- Busca modelo con menor AIC o SBC
- \bullet SBC penaliza más el número de parámetros que AIC (porque ln T>2 cuando $\,T>7)$

- Los métodos 2. y 3., es decir, "de lo simple a lo general" y "de lo general a lo simple", buscan también un modelo simple, pero con parámetros significativos
- Es decir, aunque un modelo con menos términos es mejor que otro con más términos según AIC o SBC, 2) y 3) eligen el modelo con más términos si estos son significativos
- Recuerda que—aproximadamente—un parámetro es significativo al 5% si el valor |t|>2, y si los residuos son aproximadamente Gaussianos

ullet Ejemplo. Selección del mejor modelo(s) ARMA de $\Delta \log PIB_t$ utilizando EViews:

	$\hat{\phi}_{0}$	$\hat{\phi}_1$	$\hat{ heta}_1$	Q	Q^2	AIC	SBC
	(<i>p</i> -val)						
ARMA(0,0)	0.04	-	-	1.81	0.48	-3.45	-3.41
	(0.00)			(0.18)	(0.49)		
ARMA(1,0)	0.041	0.19	-	0.51	3.56	-3.58	-3.50
, ,	(0.00)	(0.17)		(0.48)	(0.06)		
ARMA(0,1)	0.04	_	0.25	0.27	1.45	-3.46	-3.38
(, ,	(0.00)		(0.07)	(0.61)	(0.23)		
ARMA(1,1)	0.04	0.14	0.06	1.26	3.42	-3.54	-3.43
	(0.00)	(0.68)	(0.87)	(0.26)	(0.06)		

- Dado un nivel de significación del 10%:
 - \rightarrow Método 1: Según AIC eliges ARMA(0,1), según SBC eliges ARMA(0,0)
 - → Método 2: Eliges ARMA(0,1)
 - → Método 3 y 4?
- *Nota*: Utilizando otros tests para el diagnóstico (por ejemplo el test Durbin-Watson) podría cambiar el modelo seleccionado

Previsión:

- Objetivos:
 - 1. Predecir ("forecast", "predict") una variable económica
 - 2. Comprobar que "la teoría", es decir el modelo, funciona en la "práctica"
 - 3. Utilizar la previsión fuera de muestra como un método de selección del modelo
- Teoría de predicción: Tema III

Previsión (cont.):

- Una estrategia sencilla para comprobar si un modelo funciona en la práctica es utilizar una parte de la muestra para la estimación, y la otra parte para la previsión
 - \rightarrow Si las propiedades del error $\{\epsilon_t\}$ son las mismas dentro y fuera de la muestra, entonces "la teoría funciona en la práctica"
- La previsión fuera de la muestra se puede tambien utilizar como un método de selección de modelo(s)
- Sin embargo, el fallo de previsión ("forecast failure") fuera de muestra puede ocurrir por razones de cambios estructurales, y no necesariamente porque el modelo no es bueno

Referencias:

Box, G. E. and G. M. Jenkins (1976). *Time Series Analysis:* Forecasting and Control. San Fransisco: Holden-Day. Revised Edition.