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Abstract We study the properties of two methods for financial density selection of
the Skewed Exponential Power (SEP) distribution. The simulations suggest the two
methods can be of great use in financial practice, since the recovery probabilities are
sufficiently high in finite samples. For the first method, which simply consists of se-
lecting a density by means of an information criterion, the Schwarz criterion stands
out as performing well across density categories, and in particular when the Data
Generating Process (DGP) is normal. In smaller samples the simulations suggest
that our second method, General-to-Specific (GETS) density selection, can improve
the recovery rate in predictable ways by changing the significance level. This is use-
ful because it enables us to increase the recovery rate of a chosen density category,
if one wishes to do so.

1 Introduction

Financial returns are often characterised by autoregressive conditional heteroscedas-
ticity (ARCH), and by heavier tails than the normal—possibly skewed—even after
standardising the returns. One may consider modelling everything simultaneously,
say, by means of an ARCH type model that admits both skewed and heavy-tailed er-
rors. However, in practice this is not always desirable. For example, many practition-
ers prefer using simple ARCH models like the RiskMetrics and Equally Weighted
Moving Average (EqWMA) specifications in predicting volatility, models that do
not require the specification of a density on the standardised error. Modelling the
density of the standardised error thus becomes a separate step. Also, if the mod-
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elling problem involves many explanatory variables in addition to the ARCH and
density structures, as when modelling the relative change in daily electricity prices
for example, or if the density is simply too complex for reliable estimation in prac-
tice, then simultaneous estimation and inference can be numerically inefficient or
impossible in practice. This motivates modelling the density of the standardised er-
rors in a separate step.

Here we propose and evaluate simple methods that model a standardised Skewed
Exponential Power (SEP) distribution.1 The SEP is attractive since the normal can
be obtained as a special case through parameter restrictions, and since the SEP can
produce densities that are both more and less heavy-tailed than the normal. The
latter property is a real—although uncommon—possibility, in particular for low
frequency financial returns and for models with explanatory variables. Also, the
moments of the EP distribution exist under weaker assumptions than many other
heavy-tailed distributions, say, the Student’s t.

We study the finite sample properties of two density specification search algo-
rithms through simulation. The first density search algorithm we study consists sim-
ply of choosing, among four densities, the density that minimises an appropriately
chosen information criterion. The four densities are all nested within the standard-
ised SEP: The standard normal (N) density, the standardised skew-normal (SN) den-
sity, the standardised symmetric exponential power (EP) density and the standard-
ised skewed exponential power (SEP) density. The second density search algorithm
we study can be viewed as a density selection analogue to multi-path General-to-
Specific (GETS) model selection, see Campos et al. (2005) for a comprehensive
overview of GETS model selection in regression analysis. Multi-path GETS com-
bines repeated backwards stepwise regression (with continuous diagnostic checking
and parsimonious encompassing tests of each terminal specification) with the use of
an information criterion as a tie-breaker in the case of multiple terminal specifica-
tions. The attractiveness of this modelling strategy is that the recovery rate can be
altered in controlled ways via the significance level.

The rest of this chapter contains two sections. The next section outlines the sta-
tistical framework, and the final section contains our simulations.

2 Statistical framework

The generic ARCH model is given by

rt = µt + εt , (1)
εt = σtzt , zt ∼ IID(0,1), (2)

σ2
t = Var(rt |It), (3)

1 In financial econometrics, because of Harvey (1981) and Nelson (1991), the Exponential Power
(EP) distribution is also commonly known as the Generalised Error Distribution (GED).
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where It is the conditioning information at time t, εt is the error of the mean
specification µt , σ2

t is the conditional variance and {zt} is an Independently and
Identically Distributed (IID) process with mean zero and unit variance. Typically,
It = {It−1, It−2, . . .} where It = {rt ,σt ,zt}, as for example when the mean speci-
fication µt is an Autoregressive Moving Average (ARMA) model. The most com-
mon specification of σ2

t is Bollerslev’s (1986) Generalised ARCH (GARCH) model,
where σ2

t = α0 +α1ε2
t−1 +β1σ2

t−1.
The Exponential Power (EP) distribution of order p is usually parametrised as

EP(z, p,µ ,σ) =
1

2p1/pΓ (1+1/p)σ
exp

(
−|z−µ |p

pσ p

)
(4)

with µ ∈ (−∞,∞), σ > 0 and p ∈ (0,∞). µ is a location parameter, σ is a scale
parameter and p is a shape parameter. The normal distribution is obtained when p =
2, whereas fatter (thinner) tails are produced when p < 2 (p > 2). In particular, the
double exponential distribution (also known as the Laplace distribution) is obtained
when p = 1, whereas p → ∞ yields a uniform distribution. The standardised EP
density of Nelson (1991) is obtained by setting

µ = 0, σ =
Γ (1/p)(1/2)

p(1/p)Γ (3/p)(1/2) , (5)

which means E(z) = 0 and Var(z) = 1.
Following Zhu and Zinde-Walsh (2009) we may distinguish between two main

approaches to the skewing of an EP distribution. The method of Azzalini (1986)
on the one hand, and the method of Fernández et al. (1995), Fernández and Steel
(1998), Theodossiou (2000) and Komunjer (2007) on the other. The main advan-
tage of the Azzalini (1986) method is that it enables some elegant and attractive
manipulation properties. Unfortunately, however, it is not clear that ML estimation
provides consistent parameter estimates, see Zhu and Zinde-Walsh (2009, p. 90). By
contrast, consistency of ML estimation for the second method, which we will refer
to as the Fernández and Steel (1998) method, is proved by Zhu and Zinde-Walsh
(2009) when the shape parameter p is greater than 1. Moreover, the Fernández and
Steel (1998) method is conceptually simpler and readily applicable to other densi-
ties. For these reasons we skew the standardised EP distribution by means of the
Fernández and Steel (1998) method.

According to the Fernández and Steel (1998) method, if f (z) is a probability
density function that is unimodal and symmetric about 0, then

g(z) =
2

γ + 1
γ

[
f
(

z
γ

)
I[0,∞)(z)+ f (zγ)I(−∞,0)(z)

]
is a skewed probability density function, where I(·)(z) is an indicator function, and
where γ ∈ (0,∞). Symmetry is attained when γ = 1, whereas γ < 1 and γ > 1 pro-
duce left and right skewness, respectively. That is, heavier tails to the left and right,
respectively. From the formula for the rth. (positive) integer moment (Fernández
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and Steele, 1998 p. 360) it follows (assuming f (z) is the standardised version of (4)
such that (5) is satisfied) that:

Mr = 2
∫ ∞

0
zr f (z)dz (rth. absolute moment; M2 = 1)

µγ = M1(γ −1/γ) (mean)

σ2
γ = (1−M2

1)(γ2 +1/γ2)+2M2
1 −1 (variance)

Next, the change of variable z∗ = (z−µγ)/σγ yields the standardised SEP:

f ∗(z∗) =
2σγ

γ + 1
γ

f (zµγ σγ |γ)

where
zµγ σγ =

σγ z+µγ

γsign(σγ z+µγ )
.

Henceforth, for notational convenience, we will not make a distinction between z
and z∗. The variable z will always satisfy E(z) = 0 and Var(z) = 1.

Studying the properties of a density selection algorithm necessitates a numeri-
cally robust estimation algorithm, and the main properties of our ML code,2 which
is available on request, are contained in table 1. It should be noted that we restrict the
parameter space numerically, so that only the values in the regions γ ∈ [0.6,5] and
p ∈ [1,3] are considered. These values cover the range of values that (we believe)
are likely to be encountered in empirical practice, and restricting the search space
improves the estimation accuracy substantially in small samples. The initial values
of the algorithm are always γ = 1 and p = 2, which correspond to the symmetric
standard normal density.

3 Financial density selection

We study the finite sample performance of two density selection algorithms under
four different Data Generating Processes (DGPs): (1) z ∼ N(0,1), (2) z ∼ SN(γ =
0.7), (3) z ∼ EP(p = 1.1) and (4) z ∼ SEP(γ = 0.7, p = 1.1). For expository brevity
we will refer to these four DGPs as N, SN, EP and SEP, respectively. The values
γ = 0.7 and p = 1.1 are at the border of what one is likely to encounter in practice.

2 Our code is a modified version of code from the fGarch package, see Würtz and Chalabi (2009).
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Table 1 Numerical performance of ML estimation

T γ p M(γ̂) V (γ̂) M(p̂) V (p̂) M(iters) % no-conv.

100 1.0 2.0 1.024 0.051 2.113 0.261 8.00 0
1.1 1.008 0.014 1.146 0.039 17.29 25

200 2.0 1.005 0.014 2.059 0.125 7.70 0
1.1 1.001 0.005 1.123 0.017 17.16 24

500 2.0 1.002 0.005 2.022 0.044 8.21 0
1.1 1.002 0.204 1.104 0.007 16.91 20

1000 2.0 1.001 0.002 2.014 0.021 8.62 0
1.1 1.000 0.001 1.102 0.004 16.43 19

100 0.7 2.0 0.711 0.013 2.089 0.220 8.26 0
1.1 0.703 0.006 1.135 0.028 16.34 26

200 2.0 0.702 0.006 2.053 0.118 8.79 0
1.1 0.699 0.003 1.122 0.015 16.98 26

500 2.0 0.699 0.002 2.024 0.043 9.53 0
1.1 0.699 0.001 1.104 0.006 17.36 23

1000 2.0 0.698 0.001 2.009 0.020 9.89 0
1.1 0.699 0.000 1.101 0.003 16.92 20

Simulations (2000 replications) in R with ML estimation implemented via the nlminb() func-
tion. T is the sample size, M(·) and V (·) denote the mean and sample variance, respectively, iters
is short for iterations and % no-conv. is the percent of time that the algorithm did not converge.

3.1 Density selection by means of information criteria

Choosing the density that minimises an appropriate information criterion results in
consistent density selection. However, the success rate may not be very high in finite
samples. Here, our objective is to shed light on this by comparing the performance of
three different information criteria: The Schwarz (1978) criterion (SC),3 the Akaike
(1974) criterion (AIC) and the Hannan and Quinn (1979) criterion (HQ). The three
criteria we compute as

SC: −2logl/T + k(logT )/T
AIC: −2logl/T +2k/T
HQ: −2logl/T +2k log[log(T )]/T

where logl is the empirical log-likelihood, and where k = 0,k = 1,k = 1 and k = 2
for N, SN, EP and SEP, respectively.

Table 2 contains the probabilities of recovering the right density for four different
DGPs. The SC criterion has the best overall performance, since it performes well
in all four cases, and since it performs well in both small and large samples. Also,
consistent model selection is attained relatively fast in all four cases. Indeed, the
simulations suggest that when the sample size is greater than 300, then SC is the
preferred information criterion. Of course, this is to some extent because of the
large differences between the four densities (smaller differences would presumably

3 The SC is also known as the Bayesian Information Criterion (BIC).
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result in lower recover rates). When the sample size is smaller than 300, however,
then the simulations suggest that the HQ criterion should be preferred. The AIC is
sometimes slightly better than HQ in small samples, but the probabilities increase
slower than for HQ, in particular when the DGP is normal.

Table 2 Probabilities of recovering the right density for different information criteria, under dif-
ferent DGPs

DGP = N: DGP = SN: DGP = EP: DGP = SEP:
T SC AIC HQ SC AIC HQ SC AIC HQ SC AIC HQ

100 0.93 0.69 0.83 0.53 0.68 0.64 0.74 0.75 0.80 0.77 0.91 0.87
200 0.96 0.72 0.87 0.81 0.81 0.86 0.94 0.82 0.91 0.96 1.00 0.99
300 0.96 0.69 0.88 0.93 0.83 0.93 0.97 0.83 0.93 1.00 1.00 1.00
500 0.97 0.71 0.88 0.98 0.84 0.94 0.98 0.84 0.95 1.00 1.00 1.00

1000 0.98 0.71 0.89 0.99 0.83 0.95 0.99 0.84 0.94 1.00 1.00 1.00

Simulations (2000 replications) in R

3.2 GETS density selection

The GETS density selection algorithm that we propose starts with the unrestricted
estimate of a SEP density. Next, two different simplification paths are considered.
The first path consists of first testing the restriction p = 2 and then γ = 1, and the
second path consists of first testing the restriction γ = 1 and then p = 2. Inference
is by means of likelihood ratio (LR) tests, and simplification along a path stops
when a null hypothesis is rejected. Table 3 contains the finite sample probabilities
of rejecting the various null hypotheses that makes up GETS density selection under
different DGPs. The table suggests that the empirical size is close to the nominal size
in finite samples, when the alternative does not coincide with the DGP. Sometimes,
simplification can result in two different terminal models, say, SN and EP, or SN
and N, or EP and N. In such cases the model with the lowest value on the chosen
information criterion is selected. As the sample size T goes to infinity, this density
selection algorithm has some very useful and known properties, namely that the
probabilities of recovering the DGP depends on the significance level α:

p(DGP|N)→ (1−α)2

p(DGP|SN)→ (1−α)

p(DGP|EP)→ (1−α)

p(DGP|SEP)→ 1

That is, when the DGP is equal to N, then the probability of recovering the DGP
tends to (1−α)2 as the sample size goes to infinity. For example, for the nominal
sizes 10% and 5% the probability p(DGP|N) tends to 0.81 and 0.9025, respectively.
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If the DGP is SN, then the probability of recovering SN tends to (1−α), and so
on. The usefulness of these properties is that one can use the significance level α
to “push” the algorithm either towards or away from normality, if one wishes to do
so. For example, the simulations above showed that the SC criterion performs very
well in both small and large sample sizes when the DGP is normal. However, when
the DGP is not normal, then the SC criterion does not always recover the DGP more
often than the other criteria. Hence one may increase the recovering probabilities
when the DGP is not normal (or alternatively when the cost of falsely characterising
the density as non-normal is not large) in a controlled and predictable way by simply
increasing the significance level.

Figure 1 provides a snapshot of how GETS density selection actually works in
practice. The figure contains the probabilities of recovering the DGP with an SC
criterion, and the probabilities of recovering the DGP using GETS density selec-
tion combined with an SC criterion. The first thing to note is that the asymptotic
probabilities are (approximately) attained relatively fast: At 100 observations at the
earliest and at about 300 to 500 observations at the latest. Of course, this conver-
gence will be slower when the DGPs differ less. The second thing to note is that
there are notable gains to be made in small samples. For example, when the DGP
is equal to SEP then there is a gain of about 13 percentage points when the sample
size is 100 observations. In finance, where one would expect departure from nor-
mality, this can be a very useful gain. Indeed, the gain might even be larger when
the departure from normality is not as large as in the simulations.
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Fig. 1 Probabilities of recovering the DGP by means of an SC information criterion (solid line),
and by means of GETS density selection combined with an SC criterion using 5% (dashed line)
and 10% (dotted line) significance levels, respectively. All simulations (2000 replications) in R


