USING AUTOMETRICS

Genaro Sucarrat

(Department of Economics, UC3M)

http://www.eco.uc3m.es/sucarrat/

March 25, 2008

The basics of OxMetrics 5:

 \rightarrow Loading, editing and transforming data, creating "special" series (cointegration relations, trends, etc.)

An overview of Autometrics:

 \rightarrow Key concepts and characteristics

Single-equation modelling with Autometrics

 \rightarrow Formulation, Advanced Autometrics settings, fixing variables, example (2007 Econometric Game, Q1)

Multiple-equation modelling with Autometrics

 \rightarrow Formulation, fixing variables, example (2007 Econometric Game, Q2)

OxMetrics basics:

- \bullet Load data: File \rightarrow Open, etc.
- Edit sample/dates: Edit \rightarrow Change Sample
- Missing values (recommendation): Set to "missing" by double-clicking the data cell in question
- \bullet Graph series: Model \to Graphics (or click on the graphics button) \to Actual series or All plot types
- Transform data (algebra feature):

(NOTE: Case sensitivity in variable names!)

 \bullet Create special series (calculator feature): Model \to Calculator (or click on the calculator button) $\to \ldots$

• Example. Edit dates (2007 Econometric Game Case):

') 💕 🕼 🗑 🖉 👌	3	+ 1	100	C EG_2007_	data.xls	🖂 🌌 📒 A	8 2 3	> 🎦 🔳 :	3	
estStat 💽 🕵	K 2			9 ØI =	11 JF	{++} // ∰				
cuments 🛛		DATE	TEMP	C00	RAD	PRE	VAP	CLD		
Data	1	196401	46813	319.57	160.1	\$65.67	284.02	\$76.78		
EG_2007_data.xls	2	196402	63308	-99.99	163.3	529.84	273.12	561.8Z		
Graphics	3	196403	1.7299	-99.99	169.28	485.5	316.9	554.76		
Code	4	196404	86419	-99.99	170.36	561.06	258.69	542.07		
Text Results	5	196405	81742	322.23	166.66	Change Sam	ple			8
Modules	6	196406	.11888	321.89	174.27	Current Databa	se Sample			
Model	7	196407	-1.1069	320.44	174.27					
GØRCH	8	196408	79489	318.7	169.99	1 - 444 Und	Saked			
PoGive	9	196409	84677	316.7	170.48					-
STAMP	10	196410	-1.8906	316.87	169.42	Frequency and				
💠 Ox	11	196411	1.68	317.68	167.74		Franklin Manual L			
🕸 OxDebug	12	196412	26573	318.71	169.88	Frequency Monthly				
· @ OxGauss	13	196501	.67713	319.44	164.94					
Ø OxPack	14	196502	.14814	320.44	173.85					
⊕ OxRun ⊕ Ox - interactive	15	196503	.90268	320.89	167.49					
W X12arima	16	196504	.014441	322.13	168.84	Start Date	Start Date 1964-1			
A VICO ING	17	196505	.63035	322.16	172.3					
	18	196506	1.0055	321,87	169.88		year-perior	i i		
	19	196507	85229	321.21	169.41	1				
	20	196508	57024	318,87	166.6	Sample Size				
	21	196509	.45379	317.81	169.38					
	22	196510	90715	317.3	163.89	Observations	0	\$		
	23	196511	62274	318,87	169.44					
	24	196512	32086	319.42	171.57	Action	Add observ	ations at the end	~	
	25	196601	.3568	320.62	163.62	L				9
	26	196602	79059	321.59	168.87				_	
	27	196603	2.5034	322.39	170.66		ОК	Cancel		
	28	196604	.28895	323.7	162.72	557.48	287.82	554.08		_
	2.9	196605	. 50448	324.07	163.78	523.04	298.36	566.47		
	30	196606	1.6865	323.75	170.41	564.71	321.53	565.45		
	31	196607	.28445	322.4	167.5	672.49	302.51	583.61		
	32	196608	-2.1055	320.37	170.17	735.03	248.43	570.47		
	32	196609	-1.9345	318.64	169.95	763.91	256.81	581.43		
p 🔺	24	196610	.17696	318.1	169.04	610.38	295.64	574.52		

• Example. Create a differenced series:

		' 💷 🚺 🛄	50	EG_2007_data	a_01.xls 🔛	🚈 🛅 At	2	2 🗖 🗗 🔁	
estikat 💌 🔽	S A 1		S. (2)	11 m. 1	(n) =	11 #			
cuments 🛛 🔻		DATE	TEMP	C00	RAD	PRE	VAP	CLD	
Data	1964(1)	196401	46813	319.57	160.1	\$65.67	284.02	\$76.78	
EG_2007_data_01.xls	1964(2)	196402	63308	missing	163.3	529.84	273.12	561.82	
Graphics	1964(3)	196403	1.7299	missing	169.28	485.5	316.9	554.76	
Plot Plot	1964(4)	196404	86419	missing	170.36	561.06	258.69	542.07	
Code	1964(5)	196405	81742	322.23	166.66	561.39	273.32	569.55	
E Results	1964(6)	196406	.11888	321.89	174.27	567.33	298.11	581.44	
Modules	1964(7)	196407	-1.1069	320.44 /	Ngebra – EG	_2007_data	_01.xls		8
🕸 Model	1964(8)	196408	79489	318.7	/ Enter Alge	bra code be	re, for exa	amle:	
- · GBRCH	1964(9)	196409	84677		y = log(y);				
- I PoGive	1964(10)	196410	-1.8906	316.87					
- I STAMP	1964(11)	196411	1.68	317.68					
- 拳 Ox	1964(12)	196412	26573	318.71		diff(COO,:	1) ;		^
- 🏶 OxDebug	1965(1)	196501	.67713		2				
- OxGauss	1965(2)	196502	.14814	320.44	3				
一春 OxPack 一春 OxRun	1965(3)	196503	.90268	320.85	4 5				
- Ox - interactive	1965(4)	196504	.014441	322 11	5				
· W X12arima	1965(5)	196505	. 63035	322.16	-				
	1965(6)	196506	1.8855	321.87	8				
	1965(7)	196507	85229		9				
	1965(8)	196508	57024		10				
	1965(9)	196509	. 45379		11				×
	1965(10)	196510	90715		<				>
	1965(11)	196511	62274	318.87					
	1965(12)	196512	32086	319.42	Run	Done		Load Save	As Recal
	1966(1)	196601	.3568	320.62	Eunctions		Database		
	1966(2)	196602	79059	321.55					
	1966(3)	196603	2.5034	322.35	log(VAR);	~	DATE		Del
	1966(4)	196604	. 28895	323.7			COO		
	1966(5)	196605	. 50448	324.07			RAD		
	1966(6)	196606	1.6865	323.75	Sub-sample	evaluation	PRE		
	1966(7)	196607	.28445	322.4	C		VAP		
	1966(8)	196608	-2.1055	320.37	Write Algeb	a code			Ren
	1966(9)	196609	-1.9345	318.64					
	1966(10)	196610	.17696	318.1					

References

An overview of Autometrics:

• The objective of Autometrics is to automate *General-to-Specific* (Gets) *multiple path* simplification search of a *data coherent*, *General Unrestricted Model* (GUM) in the form of a linear OLS/IV estimable regression (or regressions)

• Default definition of data-coherency: Stable parameters and Gaussian, serially uncorrelated, homoscedastic errors. NOTE: These assumptions can be relaxed through the "Advanced Autometrics settings", and if the GUM fails one or several diagnostic checks Autometrics proceeds anyway

• GUM: A general model (advice: Not too general!) that includes the variables and lags that are believed to possibly have an impact

• Further reading: Doornik and Hendry (2007a, pp. 70-77), Hendry and Krolzig (2001) (Autometrics is an evolution of PcGets) • Key benefits of Gets modelling:

 \rightarrow Estimation and inference while controlling for the impact from other variables: Spurious variables are more likely to be excluded, parameter estimates are "more correct"

 \rightarrow Gets modelling leads to a parsimonious, explanatory model particularly useful for scenario analysis (policy analysis, counterfactual analysis and conditional forecasting)

• Originally, the main disadvantage of Gets modelling was:

 \rightarrow Resource demanding and time consuming if properly implemented

Solution: Automated Gets

 \rightarrow Hoover and Perez (1999), PcGets (Hendry and Krolzig 2001), Autometrics (Doornik 2007, Doornik and Hendry 2007a)

What does multiple path Gets specification search consist in?

• Sequential deletion of insignificant variables (significance level can be user-specified), while checking data-coherency for each variable deletion (variable-deletion that induces data-incoherency, say, serially correlated errors, is not undertaken)

• Multiple path Gets search typically leads to several terminal models; Autometrics either applies Gets on their union or chooses among them by means of information criteria (can be user-specified; keyword: "Tie-breaker")

Single-equation modelling with Autometrics. *Example*: 2007 Econometric Game, Question 1

• My GUM:

$$\Delta COO_t = b_0 + b_1 \Delta COO_{t-1} + b_2 \Delta COO_{t-2} + \sum_{j=1}^{11} c_j d_{j,t} + e_t$$

• The specific model proposed by Autometrics using the default options:

$$\Delta COO_t = b_0 + b_1 \Delta COO_{t-1} + \sum_{j=1}^3 c_j d_{j,t} + \sum_{j=5}^{11} c_j d_{j,t} + e_t$$

• Unfortunately, the missing values cannot be estimated by means of the level representation

$$COO_{t} = b_{0} + (1+b_{1})COO_{t-1} + b_{1}COO_{t-2} + \sum_{j=1}^{3} c_{j}d_{j,t} + \sum_{j=5}^{11} c_{j}d_{j,t} + e_{t}$$

so a different specification is needed with, say, no lags of ΔCOO_t

• Formulate a model: (Model \rightarrow) PcGive \rightarrow Category: "Models for time series data" \rightarrow Model class: "Single-equation dynamic modelling using PcGive" \rightarrow "Formulate"

*OxMetrics - C \Docum File Edit View Moc		tings\sucarra ndow Help	t\Mis docu	mentos\f	iles\teaching\20	07_2008\us	ing_autom	etrics\analysi:	s\EG_2007_da	ita 🖬 🖻
) 😜 🚱 🗐 🞒 👌	-				data_01.xls 💽 🙀	🛋 📑 A	2%	200		
1924 💽 🕵	K # 1			01 m	# # {v}	1				
cuments V		DATE	TEMP	co		PRE	VAP	CLD	DC00	
Data	1964(1)	196401	46813	319.5	7 160.1	\$65.67	284.02	\$76.78	missing	
EG_2007_data_01.xls	1964(2)	19640Z	63308	missin	g 163.3	529.84	273.12	\$61.82	missing	
Graphics	1964(3)	196403	1.7299	missin	g 169.28	485.5	316.9	\$54.76	missing	
🛃 Data Plot	1964(4)	196404	86419	missin	g 170.36	\$61.06	258.69	\$42.07	missing	
Code Text	1964(5)	196405	81742	322.2	3 166.66	561.39	273.32	\$69.55	missing	
E Results	1964(6)	196406	.11888	321.8	9 174.27	567.33	298.11	581.44	34	
Modules	1964(7)	196407	-1.1069	320.4	4 174.27	671.11	272.72	\$79.34	-1.45	
* Model	1964(0)	196408	79489	318.	7 169.99	771.53	270.75	\$63.82	-1.74	
- @ GØRCH	1964(9)	196409	84677	316.	7 170.48	768.29	277.99	\$79.39	-2	
PcGive	1964(10)	196410	-1.8906	316.8	7 169.42	659.14	262.62	590.88	. 17	
- & STAMP	1964(11)	196411	1.68	317.6	8 167.74	596.23	328.01	578.7	. 81	
W Ox	1964(12)	196412	26573	318	PcGive - Mode	els for time	series dat	a		
OxDebug	1965(1)	196501	.67713	319						
OxGauss	1965(2)	196502	.14814	320		M (**			
OxPack OxRun	1965(3)	196503	.90268	320		á P	ו••			
	1965(4)	196504	.014441	322	All G@	RCH Po	Give ST	AMP		
X12arina	1965(5)	196505	.63035	322						
	1965(6)	196506	1.8855	321						
	1965(7)	196507	85229	321						
	1965(8)	196508	57024	318	Module PcGive					
	1965(9)	196509	.45379	317						
	1965(10)	196510	90715	31	Category Models f	or time-series d	ata			~
	1965(11)	196511	62274	318	Model class Sincle-ed	a vation Dunamic	Modeling using	Prove		~
	1965(12)	196512	32086	319	Tong one lauge of					
	1966(1)	196601	. 3568	320						
	1966(2)	196602	79059	321						
	1966(3)	196603	2.5034	322			->	Estimate	>	
	1966(4)	196604	.28895	32		Eormul			<	st
	1966(5)	196605	. 50448	324			<			
	1966(6)	196606	1.6865	323 -						
	1966(7)	196607	.28445	32		_				
	1966(8)	196608	-2.1055	320		QP	tions	Close		
	1966(9)	196609	-1.9345	318.6	4 152.25	/94.24	255.01	501.43	-4.73	
	1966(10)	196610	.17696	318.		610.38	295.64	\$74.52		
Þ 🔺	1966(10)	100010	/076	310.	1 109.04	040.30	6.75.04	014.56	54	6
			1		Model	DCOOFI	964(1)]		issing	

Introduction

References

• Specify model:

Formatice: Single equation Dynamic N Selection Search Sear	Modelling = EG_2	002-officient, 01 vice Decisions Chille Coole Reference Coole Reference Coole Decision Decisi	
Use default status	Chear>>	Constant Seasonal Trend CSeasonal	

USEFUL FEATURE: Fixing regressors (that is, preventing Autometrics from deleting them). Select the regressors to fix \rightarrow Right-click mouse \rightarrow A: instrument/fixed. NOTE: This defines instrument if IV is used instead of OLS

• Selected Autometrics options:

 \rightarrow Target size: Significance level

 \rightarrow Outlier detection: Neutralises large residuals in the GUM by means of impulse dummies

 \rightarrow Pre-search lag reduction: Speeds up simplification; GENERAL ADVICE: Turn off!

 \rightarrow Advanced Autometrics settings: In general, use only if default settings and options are unsatisfactory

 \rightarrow Recursive graphics: TURN ON! Slows down computation (slightly), but enables some very useful stability diagnostics

Introduction

OxMetrics basics Autometrics

• Advanced Autometrics settings:

tometrics Settings - Single-equation Dynam Search settings	iic Modelling
Search settings Outlier detection	None
Pre-search lag reduction	
Pre-search lag reduction Pre-search variable reduction	
Search effort	1
Backtesting	GUM 0
Tie-breaker	SC
Print level	Default output
Target size	Default: 0.05
User determined p-value	.05
Diagnostic test p-value	.01
Standard errors	Default
GIVE: first do reduced form	
Block identification when there are too many para	meters
Diagnostic test set	
Use default	V
Normality test	
Heteroscedasticity test (using squares)	V
Heteroscedasticity test (using squares and cross products)	
Chow test	V
RESET test (using squares)	
Error autocorrelation test	
Portmanteau statistic	
ARCH test	
Diagnostic test arguments	
Use default	V
Chow-test sample split (%)	70
Error autocorrelation to lag	2
Portmanteau lag length	
ARCH test to lag	2
ОК	Cancel

• Specific model proposed by Autometrics:

EQ(2) Modelling DCOO by OLS

The dataset is: C:\Documents and Settings\sucarrat\Mis documentos\files\teaching The estimation sample is: 1964(8) - 2000(12)

	Coefficient				Part.R^2
DC00_1	-0.213999	0.04512	-4.74	0.0000	0.0503
Seasonal			-3.40		0.0265
Seasonal_1	-0.507123	0.05851	-8.67	0.0000	0.1502
Seasonal_2	-0.451573	0.06034	-7.48	0.0000	0.1165
Seasonal_4	-0.707806	0.05885	-12.0	0.0000	0.2540
Seasonal_5	-1.94870	0.06413	-30.4	0.0000	0.6848
Seasonal_6	-3.02784	0.09527	-31.8	0.0000	0.7038
Seasonal_7	-3.77271	0.1275	-29.6	0.0000	0.6733
Seasonal_8 Seasonal_9	-3.69728	0.1505	-24.6	0.0000	0.5868
Seasonal_9	-1.89487	0.1424	-13.3	0.0000	0.2941
Seasonal_10	-0.176490	0.07692	-2.29	0.0222	0.0122
Constant U	1.50663	0.06042	24.9	0.0000	0.5940
sigma	0.286776	RSS		34.95208	321
R^2	0.946555	F(11,425)	= 684.3	[0.000]	**
log-likelihood	-68.1549	DW		2.	05
no. of observatio	ns 437	no. of par	ameters		12
mean (DCOO)	0.112334	var (DCOO)		1.496	554
AR 1-7 test:	F(7,418) =	1.0154 [0	.4196]		
ARCH 1-7 test:	F(7,411) =	0.78778 [0	. 5979]		
Normality test:	Chi^2(2) =	2.5460 [0	.2800]		
Hetero test:	F(12, 412) =	0.85756 [0	.5908]		
Hetero-X test:	F(22, 402) =	1.2915 [0	.1715]		
RESET test:	F(1,424) =	0.00067988 [0.9792]		

Further diagnostic tests:

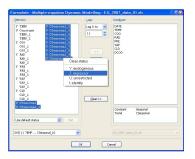
- \bullet Residuals graphs: Model \rightarrow Test \rightarrow Graphical analysis $\rightarrow \dots$
- \bullet User specified residuals tests: Model \rightarrow Test \rightarrow Test $\rightarrow \ldots$

 \bullet Recursive graphics (VERY useful!): Model \rightarrow Test \rightarrow Recursive graphics $\rightarrow \ldots$

Multiple-equation modelling with Autometrics: Two possibilities

• Seemingly Unrelated Regression (SUR) using OLS/IV, that is, single-equation modelling of each equation separately (requires stationarity of regressors)

• Simultaneous variable deletion (or non-deletion) across equations using vector diagnostic tests but estimation still by OLS (does not require stationarity of regressors), see Doornik and Hendry (2007b, pp. 29-31). (NOTE: IV estimation not available with this strategy)


 \rightarrow Model type: "Unrestricted system" (system of URFs), see Doornik and Hendry (2007b, chapter 3)

Formulate a system: (Model \rightarrow) PcGive \rightarrow Category: "Models for time series data" \rightarrow Model class: "Multiple-equation dynamic modelling using PcGive" \rightarrow "Formulate"

📓 PcGive	- Models for time-series data	×
All		
Module Category Model class	PcGive Models for time-series data Multiple-equation Dynamic Modelling using PcGive	< <
	Formulate> Estimate> Test	
	Options Close	

Multiple-equation modelling with Autometrics using second possibility. *Example*: 2007 Econometric Game, Question 2

• My GUM: A six-dimensional VAR(2) of $y_t = (TEMP_t, COO_t, RAD_t, PRE_t, VAP_t, CLD_t)$, with a constant and 11 centered seasonals in each of the six equations:

NOTE: Fixing variables (that is, not allowing Autometrics to delete them) now differs. Select the variables to delete \rightarrow Right-click mouse \rightarrow U: Unrestricted. (Unfixing: Z: regressor)

Results:

• NOTE: Autometrics simplifies even though the GUM does not pass all diagnostic checks

 \bullet Four variables are removed from all of the equations: The second lag of TEMP, VAP and CLD, and CSeasonal 10

Other type of analysis:

• Cointegration analysis (applied on the Unrestricted system, not on the simplified model): Model \rightarrow Test \rightarrow Dynamic Analysis and Cointegration Tests $\rightarrow \ldots$

See Doornik and Hendry (2007b, chapter 4)

References:

- Doornik, J. (2007). Autometrics. Working Paper, Economics Department, University of Oxford.
- Doornik, J. A. and D. F. Hendry (2007a). Empirical Econometric Modelling - PcGive 12: Volume I. London: Timberlake Consultants Ltd.
- Doornik, J. A. and D. F. Hendry (2007b). Empirical Econometric Modelling - PcGive 12: Volume II. London: Timberlake Consultants Ltd.
- Hendry, D. F. and H.-M. Krolzig (2001). Automatic Econometric Model Selection using PcGets. London: Timberlake Consultants Press.
- Hoover, K. D. and S. J. Perez (1999). Data Mining Reconsidered: Encompassing and the General-to-Specific Approach to Specification Search. *Econometrics Journal 2*, 167–191.