Multi-Path General-to-Specific Modelling with OxMetrics

Genaro Sucarrat

(Department of Economics, UC3M)

http://www.eco.uc3m.es/sucarrat/

1 April 2009 (Corrected for errata 22 November 2010)

Outline:

- 1. General-to-Specific (GETS) modelling:
 - \rightarrow Motivation, properties, advantages, disadvantages
- 2. The basics of OxMetrics 5:

 \rightarrow Loading, editing and transforming data (logs, differencing), creating "special" series (cointegration relations, trends, etc.)

- 3. An overview of Autometrics:
 - \rightarrow Key concepts and characteristics
- Single-equation modelling with Autometrics

 → Formulation, Advanced Autometrics settings, fixing variables, example (2007 Econometric Game, Q1)
- 5. Multiple-equation modelling with Autometrics

 \rightarrow Formulation, fixing variables, example (2007 Econometric Game, Q2)

Common (in-sample) modelling strategies:

- 1. Select model that minimises information criterion
- 2. Simple-to-general
- 3. "1-shot" General
- 4. Single-path GETS
- Multi-Path GETS: Combines 1 and 4 iteratively

• Multi-Path GETS algorithms: Hoover and Perez (1999), PcGets (Hendry and Krolzig 2001, 2005), Autometrics (Doornik and Hendry 2007a, Doornik 2009), AutoSEARCH (Sucarrat and Escribano 2009, Sucarrat 2009)

 \bullet Autometrics: A feature in OxMetrics that automates Multi-Path GETS

Autometrics automates GETS modelling of an OLS or IV estimable linear regression

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_K x_K + \epsilon$$

where the $\{\epsilon\}$ can be homoscedastic, heteroscedastic and/or autocorrelated

- NOTE: Only the case where $\{\epsilon\} \sim IIN(0, \sigma^2)$ has been extensively studied through Monte Carlo simulation (see in particular Hendry and Krolzig 2005, and Doornik 2009)
- Analytical analysis either not possible or yields limited insight

GETS modelling summarised:

1. Formulate a General Unrestricted Model (GUM)

2. Delete step-wise, along different paths, insignificant regressors at the chosen regressor significance level α ("target size", optional), while checking a range of (optional) diagnostics at each deletion using a different (optional) significance level

3. If simplification results in more than one terminal model, then select the model with lowest value on the chosen information criterion (default: Schwartz), or their union (optional)

Main benefits of GETS modelling:

• Estimation and inference is conducted while controlling for the influence of other variables

• In simulations multi-path GETS compares favourably to other (in-sample) modelling strategies

• GETS modelling results in a parsimonious model that is particularly useful for scenario analysis (conditional forecasting, policy analysis, counterfactual analysis, etc.)

Main disadvantages of GETS modelling:

• Slight tendency to retain irrelevant variables (the more correlated the regressors, the higher the tendency)

• Finite sample behaviour can depend substantially on the properties of the data (regressor inter-correlation, homoscedastic vs. heteroscedastic errors, fat-tailed errors, etc.)

Define k_0 as the number of relevant variables in GUM, k_1 as the number of irrelevant variables in GUM (and so $k_0 + k_1 = K$ total number of variables in the GUM):

• \hat{k}_0/k_0 is the relevance proportion or "potency" (analogous to "power" in statistical hypothesis testing)

• \hat{k}_1/k_1 is the irrelevance proportion or "gauge" (analogous to "size" in statistical hypothesis testing)

Main statistical properties of Autometrics (default options):

- $E(\hat{k}_0/k_0)
 ightarrow 1$ as the sample size goes to ∞
- $E(\hat{k}_1/k_1)
 ightarrow lpha$ as the sample size goes to ∞

Target size:

 \bullet User defined regressor significance level $\alpha.$ For example, if 5% is chosen, then the insignificant regressors at 5% are deleted

Diagnostic test *p*-value:

• The acceptable diagnostic test significance level. For example, if deleting an insignificant variable results in a diagnostic test *p*-value above the acceptable level, then the variable is re-included into the model

Branch:

• Suppose we choose a regressor significance level of 5%, and consider the following GUM:

Regressor	Coef.	<i>P</i> -value
<i>x</i> ₁	2.851	0.35
<i>x</i> ₂	0.343	0.00
<i>x</i> ₃	1.069	0.07

The GUM contains TWO insignificant variables $(x_1 \text{ and } x_3) \Rightarrow$ TWO branches each made up of *paths*

Path:

• A deletion sequence. For example if x_1 is deleted first and then x_3 before no regressors are significant at the chosen regressor significance level, then $\{x_1, x_3\}$ is a deletion path or sequence

Rounds:

• If simplification results in more than one terminal model, then Autometrics initiates a second round by forming a new GUM made up of the union of the terminal models

• Specification search terminates when either only one terminal model results, or when the GUM at round n equals the GUM at round n-1. If this is the case, then a "Tiebreaker" (an information criterion) is used to select among the models

Backtesting:

• Parsimonious encompassing test. By default, this is a joint test of the final model against the initial GUM ("GUM 0"), that is, an F-test of whether the deleted regressors are jointly insignificant at

OxMetrics basics:

- \bullet Load data: File \rightarrow Open, etc.
- \bullet Edit sample/dates: Edit \rightarrow Change Sample
- Missing values (my recommendation): Set to "missing" by double-clicking the data cell in question
- \bullet Graph series: Model \to Graphics (or click on the graphics button) \to Actual series or All plot types
- Transform data (algebra feature):

(NOTE: Case sensitivity in variable names!)

 \bullet Create special series (calculator feature): Model \to Calculator (or click on the calculator button) $\to \ldots$

• Example. Edit dates (2007 Econometric Game Case):

📁 🕼 📓 🖡	3	*	i 🗈 🕫	C EG_2007_	data.xls	🖂 🌌 🛅 A	8 🕽 🔊	2 🖉	3		
at 💽 🕏		A 📕 🖬	E . (9 🖬 🗮	**	{⇔} //∰					
ents 🔻		DATE	TEMP	C00	RAD	PRE	VAP	CLD			
a .	1	196401	46813	319.57	160.1	565.67	284.02	\$76.78			
EG_2007_data.xls	2	196402	63308	-99.99	163.3	529.84	273.12	561.8Z			
phics	3	196403	1.7299	-99.99	169.28	485.5	316.9	554.76			
ie N	4	196404	86419	-99.99	170.36	561.06	258.69	542.07			
t Results	5	196405	81742	322.23	166.66	Change Sam	ple				
iules	6	196406	.11888	321.89	174.27	Current Databa	se Sample				
Model	7	196407	-1.1069	320.44	174.27		data d				
# GØRCH	8	196408	79489	318.7	169.99	1 - 444 Uno	Saked				
· PoGive	9	196409	84677	316.7	170.48	and the second s					
STAMP	10	196410	-1.8906	316.87	169.42	Frequency and	Start Date				
Ox	11	196411	1.68	317.68	167.74	Frequency	Monthly	~			
OxDebug	12	196412	26573	318.71	169.88	rrequency	Porking				
OxGauss OxPack	13	196501	.67713	319.44	164.94	Days per week					
OxPack	14	196502	.14814	320.44	173.85						
Ox - interactive	15	196503	.90268	320.89	167.49						
X12arima	16	196504	.014441	322.13	168.84	Start Date	1964-1				
	17	196505	.63035	322.16	172.3						
	18	196506	1.8855	321.87	169.88		year-period				
	19	196507	85229	321.21	169.41	L					
	20	196508	57024	318.87	166.6	Sample Size					
	21	196509	.45379	317.81	169.38						
	22	196510	90715	317.3	163.89	Observations	0	*			
	23	196511	62274	318.87	169.44	A	Add about a	tions at the end	~		
	24	196512	32086	319.42	171.57	Action	Huu übserva	ouns at the end			
	25	196601	.3568	320.62	163.62	C					
	26	196602	79059	321.59	168.87		OK	Cancel			
	27	196603	2.5034	322.39	170.66		UK.	Carter			
	28	196604	.28895	323.7	162.72	557.48	287.82	554.08		_	
	2.9	196605	. 50448	324.07	163.78	523.04	298.36	566.47			
	30	196606	1.6865	323.75	170.41	564.71	321.53	565.45			
	31	196607	.28445	322.4	167.5	672.49	302.51	583.61			
	32	196608	-2.1055	320.37	170.17	735.03	248.43	570.47			
	33	196609	-1.9345	318.64	169.95	763.91	256.81	581.43			
	< 34	196610	.17696	318.1	169.04	610.38	295.64	574.52			

• Example. Create a differenced series:

<u>-</u>) 🗐 🕼 🕼 🖉 1	🖻 🍇 🧃	• 📄 💼 🛍	50	EG_2007_dat	a_01.xls	🌌 🛅 🗚	2 🎾	2003	
estikat 💽 🕵	K 2		S (2)	1 - 1	€ # {••}	// #			
ocuments V		DATE	TEMP	C00	RAD	PRE	VAP	CLD	
Daka	1964(1)	196401	46813	319.57	160.1	\$65.67	284.02	576.78	
EG_2007_data_01.xls	1964(2)	196402	63308	missing	163.3	529.84	273.12	561.82	
Graphics	1964(3)	196403	1.7299	missing	169.28	485.5	316.9	554.76	
Plota Plot	1964(4)	196404	86419	missing	170.36	561.06	258.69	542.07	
Code	1964(5)	196405	81742	322.23	166.66	561.39	273.32	569.55	
E Results	1964(6)	196406	.11888	321.89	174.27	567.33	298.11	581.44	
Modules	1964(7)	196407	-1.1069	320.44	Ngebra – EG	_2007_data	_01.xls		8
Model	1964(8)	196408	79489	318.7	/ Enter Alg	ebra code he	re, for exa	ample:	
- & GØRCH	1964(9)	196409	84677	316.7 1	y = log(y);	DLy = diff	(Ly, 1);	-	
- · PcGive	1964(10)	196410	-1.8906	316.87					
- I STAMP	1964(11)	196411	1.68	317.68					
一春 Ox 一春 OxDebug	1964(12)	196412	26573	318.71		diff(COO,	0.2		^
	1965(1)	196501	.67713		2				
- 拳 OxGauss - 拳 OxPack	1965(2)	196502	.14814	320.44	3				
- @ OxPatik	1965(3)	196503	.90268	320.85	4 5				
- Ox - interactive	1965(4)	196504	.014441	322 11	5				
· W X12arima	1965(5)	196505	. 63035	322.16	7				
	1965(6)	196506	1.8855	321.87	8				
	1965(7)	196507	85229		9				
	1965(8)	196508	57024		10				
	1965(9)	196509	. 45379		11				×
	1965(10)	196510	90715		<				>
	1965(11)	196511	62274	318.87					
	1965(12)	196512	32086	319.42	Run	Done		Load Sav	e As Recal
	1966(1)	196601	.3568	320.62	Functions		Database		
	1966(2)	196602	79059	321.55					
	1966(3)	196603	2.5034	322.35	log(VAR);	~	DATE TEMP		Del
	1966(4)	196604	.28895	323.7			COO		
	1966(5)	196605	. 50448	324.07			RAD		
	1966(6)	196606	1.6865	323.75	Sub-sample	evaluation	PRE		
	1966(7)	196607	.28445	322.4	C unas dest		CLD		
	1966(8)	196608	-2.1055	320.37	Write Algeb	ra Code			Ren
	1966(9)	196609	-1.9345	318.64					
elo de	1966(10)	196610	.17696	318.1					

Autometrics is a multi-path GETS modelling feature in OxMetrics:

• The objective of Autometrics is to automate Multi-Path GETS specification search of a *data coherent, General Unrestricted Model* (GUM) in the form of a linear OLS/IV estimable regression (or regressions)

• Default definition of data-coherency: Stable parameters and Gaussian, serially uncorrelated, homoscedastic errors. NOTE: These assumptions can be relaxed through the "Advanced Autometrics settings", and if the GUM fails one or several diagnostic checks Autometrics proceeds anyway

• GUM: A general model (advice: Not too general!) that includes the variables and lags that are believed to possibly have an impact

• Further reading: Doornik and Hendry (2007a, pp. 70-77), Hendry and Krolzig (2001) (Autometrics is an evolution of PcGets) Single-equation estimation. $\ensuremath{\textit{Example}}\xspace$ 2007 Econometric Game, Question 1

• A "rough" GUM:

$$\Delta COO_t = b_0 + b_1 \Delta COO_{t-1} + b_2 \Delta COO_{t-2} + \sum_{j=1}^{11} c_j d_{j,t} + e_t \quad (1)$$

- Formulating a model: (Model \rightarrow) PcGive \rightarrow Category: "Models for time series data" \rightarrow Model class: "Single-equation dynamic modelling using PcGive" (\rightarrow Options) \rightarrow "Formulate"
- Some estimation options (\rightarrow Options):

 \rightarrow White (1980) standard errors: Tick "Heteroscedasticity consistent standard errors"

 \rightarrow Newey and West (1987) standard errors: Tick "Heteroscedasticity consistent standard errors" and "HACSE"

 \rightarrow Selected diagnostic tests: Tick "Test summary"

• Formulate a model: (Model \rightarrow) PcGive \rightarrow Category: "Models for time series data" \rightarrow Model class: "Single-equation dynamic modelling using PcGive" \rightarrow "Formulate"

) ધ 🕼 🕼 🌢	è 🔌 🔶	1	100		data_01.xis 💽 💏	🗄 📑 🕯	2 🎾	2 🗖 🗇		
titat 🔽 🕵	* # I		201	间 =	· 🖆 📲 {++} //	H				
uments 🔻		DATE	TEMP	co	DO RAD	PRE	VAP	CLD	DC00	
Data	1964(1)	196401	46813	319.8	57 160.1	\$65.67	284.02	\$76.78	missing	
👸 EG_2007_data_01.xls	1964(2)	196402	63308	missin	ng 163.3	529.84	273.12	561.82	missing	
araphics	1964(3)	196403	1.7299	missin	ng 169.28	485.5	316.9	\$54.76	missing	
🖄 Data Plot	1964(4)	196404	86419	missie	ng 170.36	\$61.06	258.69	\$42.07	missing	
Tode Text	1964(\$)	196405	81742	322.2	166.66	\$61.39	273.32	\$69.55	missing	
Ext	1964(6)	196406	.11888	321.8	9 174.27	\$67.33	298.11	581.44	34	
= Results fodules	1964(7)	196407	-1.1069	320.4	14 174.27	671.11	272.72	579.34	-1.45	
Model	1964(8)	196408	79489	318.	7 169.99	771.53	270.75	563.82	-1.74	
GØRCH	1964(9)	196409	84677	316.	7 170.48	768.29	277.99	\$79.39	-2	
- · PoGive	1964(10)	196410	-1.8906	316.8	169.42	659.14	262.62	\$90.88	. 17	
- & STAMP	1964(11)	196411	1.68	317.6	167.74	\$96.23	328.01	578.7	. 81	
Ø Ox	1964(12)	196412	26573	318	PcGive - Model	s for time	series dat	a		8
Ø OxDebug	1965(1)	196501	.67713	319						
OxGauss	1965(2)	196502	.14814	320		S /	**			
Ø OxPack	1965(3)	196503	.90268	320		2 6	× 1	-		
	1965(4)	196504	.014441	322	All G@F	ICH Po	Give ST	AMP		
X12arima	1965(5)	196505	. 63035	322						
the case of the	1965(6)	196506	1.8855	321						
	1965(7)	196507	85229	321						
	1965(8)	196508	57024	318	Module PcGive					
	1965(9)	196509	. 45379	317						
	1965(10)	196510	90715	31	Gategory Models for	time-series d	ata			~
	1965(11)	196511	62274	318	Model class Single-equa	ation Dunamic	Modeling using	Prove		~
	1965(12)	196512	32086	319	Tone one Inche ode			, conto		
	1966(1)	196601	. 3568	320						
	1966(2)	196602	79059	321						
	1966(3)	196603	2.5034	322			->	Estimate	>	
	1966(4)	196604	.28895	32		Eormul				Iest
	1966(5)	196605	. 50448	324			<	Progress	<	
	1966(6)	196606	1.6865	323						
	1966(7)	196607	.28445	32		_				
	1966(8)	196608	-2.1055	320		9	tions	Close		
	1966(9)	196609	-1.9345	318.0	4 169.95	763.91	255.01	501.43	-1.73	

• Estimation options (\rightarrow Options):

Maximization Settings		
- Maximum number of iterations	1000	
Write results for every	0	
Write in compact form		
Convergence		
Strong convergence tolerance	.0001	
Weak convergence tolerance	.005	
Default		
Reset default		
Additional output to be printed after estimation		
Correlation matrix of regressors		
Heteroscedasticity consistent standard errors		
HACSE (default is HCSE if selected)		
Information criteria		
Instability tests (single equation only)		
R^2 relative to difference and seasonals (single equation only)		
Covariance matrix of estimated parameters		
Test Summary		
Static long-run solution		
Equation format		
Cointegration test		
Further options		
Cointegration test: with Max test		

• Specify model $(\ldots \rightarrow \text{Formulate})$:

Formulate - Single-equation D	ynamic Mod	elling - EG_	2007	
Selecton Constant DCOD_1 DCOD_2 DCOD_2 COnstant DCOD_2 COnstant CONSTANT CONS	Lags Lag 0 to v 2 \$	Database DATE TEMP COO RAD PRE VAP CLD DCOO		
Use default status V Set Recal a previous model V CC			ieasonal (Seasonal ginal.xds	

- "Seasonal", "CSeasonal": Seasonal dummies and centred seasonal dummies, respectively
- \bullet Estimate with default options: $\mathsf{Ok} \to \mathsf{Ok} \to \mathsf{Ok}$

Single-equation GETS modelling with Autometrics. *Example*: 2007 Econometric Game, Question 1

• Recall the "rough" GUM:

$$\Delta COO_{t} = b_{0} + b_{1} \Delta COO_{t-1} + b_{2} \Delta COO_{t-2} + \sum_{j=1}^{11} c_{j} d_{j,t} + e_{t}$$

• The specific model proposed by Autometrics using the default options:

$$\Delta COO_t = b_0 + b_1 \Delta COO_{t-1} + \sum_{j=1}^3 c_j d_{j,t} + \sum_{j=5}^{11} c_j d_{j,t} + e_t$$

• Level representation:

$$COO_{t} = b_{0} + (1+b_{1})COO_{t-1} + b_{1}COO_{t-2} + \sum_{j=1}^{3} c_{j}d_{j,t} + \sum_{j=5}^{11} c_{j}d_{j,t} + e_{t}$$

• Specify model:

Formulate - Single-equation Dynamic I	Modelling - EG_2	007_data_01.xls	03
Celector Search Sear	Lags to V 2 2	Database TEPE CCO PRE PRE CLD CCO	
Use default status		Constant Seasonal Trend CSeasonal	
Recall a previous model		EG_2007_data_01.xds	~
	K Ca	ncel	

USEFUL FEATURE: Fixing regressors (that is, preventing Autometrics from deleting them). Select the regressors to fix \rightarrow Right-click mouse \rightarrow A: instrument/fixed. NOTE: Do the same thing to define instruments if IV is used instead of OLS

\bullet GETS modelling with Autometrics: Tick "Automatic model selection"

odel Settings - Sing	gle-equation Dynamic Modelling 🛛 🛛 🛛
Choose a model type:	
Ordinary least squares	۲
Instrumental variables	0
Autoregressive least squares	0
from lag	1
to lag	1
Choose the Autometrics op	
Automatic model selection	
Target size	Default: 0.05
Outlier detection	None
Pre-search lag reduction	
Advanced Autometrics settings	
	OK Cancel

- Main Autometrics options:
 - \rightarrow Target size: Regressor and backtesting significance level

 \rightarrow Outlier detection: Neutralises large residuals in the GUM by means of impulse dummies

 \rightarrow Pre-search lag reduction: Speeds up simplification; GENERAL ADVICE: Turn off!

 \rightarrow Advanced Autometrics settings: Tick if default settings are unsatisfactory

• Advanced Autometrics settings:

Search settings	ic Modelling 🚺
Outlier detection	None
Pre-search lag reduction	
Pre-search variable reduction	
Search effort	1
Backtesting	GIMO
Tie-breaker	SC
Print level	
	Default output Default: 0.05
Target size	
User determined p-value	.05
Diagnostic test p-value	.01
Standard errors	Default
GIVE: first do reduced form	V
Block identification when there are too many parar	neters
Diagnostic test set	
Use default	
Normality test	
Heteroscedasticity test (using squares)	V
Heteroscedasticity test (using squares and cross products)	
Chow test	
RESET test (using squares)	
Error autocorrelation test	
Portmanteau statistic	
ARCH test	
Diagnostic test arguments	
Use default	
	70
Chow-test sample split (%)	2
Chow-test sample split (%) Error autocorrelation to lag	
	10
Error autocorrelation to lag	

• Selected advanced Autometrics settings:

 \rightarrow Backtesting: "None" may be preferable if the final model does not encompass the initial GUM. "GUM0" is the initial GUM, which generally does not correspond to the "Current GUM"

 \rightarrow Tiebreaker: The information criterion used to select between terminal models. SC (Schwartz) and min(k) (the model with the least regressors) are the most conservative

 \rightarrow Diagnostic test *p*-value: The acceptable diagnostic test significance level. If deleting an insignificant variable results in a diagnostic test *p*-value above the acceptable level, then the variable is re-included into the model

 \rightarrow Standard errors: Ordinary ("Default"), White (1980) ("HCSE") and Newey and West (1987) ("HACSE")

 \rightarrow Heteroscedasticity tests: White (1980)

• "Recursive estimation": Slows down the computations (slightly), but it enables some very useful recursive stability analysis features

• Specific model proposed by Autometrics:

EQ(2) Modelling DCOO by OLS

The dataset is: C:\Documents and Settings\sucarrat\Mis documentos\files\teaching The estimation sample is: 1964(8) - 2000(12)

	Coefficient	Std.Error	t-value	t-prob	Part.R^2
DCOO_1	-0.213999	0.04512	-4.74	0.0000	0.0503
	-0.199927		-3.40	0.0007	0.0265
Seasonal_1			-8.67	0.0000	0.1502
Seasonal_2	-0.451573	0.06034	-7.48	0.0000	0.1165
Seasonal_4	-0.707806	0.05885	-12.0	0.0000	0.2540
Seasonal 5	-1.94870	0.06413	-30.4	0.0000	0.6848
Seasonal_6	-3.02784	0.09527	-31.8	0.0000	0.7038
Seasonal_7	-3.77271	0.1275	-29.6	0.0000	0.6733
Seasonal 8	-3.69728	0.1505	-24.6	0.0000	0.5868
Seasonal_9	-1.89487	0.1424	-13.3	0.0000	0.2941
Seasonal_10	-0.176490	0.07692	-2.29	0.0222	0.0122
Constant U	1.50663	0.06042	24.9	0.0000	0.5940
sigma	0.286776	RSS	:	34.95208	321
R^2	0.946555	F(11,425)	= 684.3	[0.000]	**
log-likelihood	-68.1549	DW		2.	.05
no. of observation	15 437	no. of par	ameters		12
mean (DCOO)	0.112334	var (DCOO)		1.496	554
AR 1-7 test:	F(7,418) =	1.0154 [0	.4196]		
ARCH 1-7 test:	F(7,411) =	0.78778 [0	. 5979]		
Normality test:	Chi^2(2) =	2.5460 [0	.2800]		
Hetero test:	F(12, 412) =	0.85756 [0	.5908]		
Hetero-X test:	F(22, 402) =	1.2915 [0	.1715]		
RESET test:	F(1,424) =	0.00067988 [0.9792]		

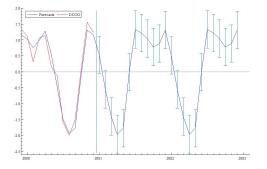
Some further diagnostic tests:

- \bullet Residuals graphs: Model \rightarrow Test \rightarrow Graphical analysis $\rightarrow \dots$
- \bullet User specified residuals tests: Model \rightarrow Test \rightarrow ...

 \bullet Recursive graphics (VERY useful!): Model \rightarrow Test \rightarrow Recursive graphics $\rightarrow \ldots$

Single equation dynamic forecasting:

• The parsimonious model suggested to us by Autometrics contains lags and deterministic terms only, so we may readily generate dynamic forecasts beyond 2000(12)


 \bullet Forecasting DCOO dynamically 24 months beyond 2000(12): Model \rightarrow Test \rightarrow Forecast and then

Forecast		DCOO
Number of forecasts:	24	
Forecast type		
Dynamic forecasts	•	
h-step forecasts	0	
h =	1	
Forecast standard errors		
Do not compute	0	
Error variance only	•	
With parameter uncertainty	0	
Options		
Use error bars	۲	
Use error bands	0	
Use error fans	0	
Critical value for error bars	2	
No of pre-forecast obs. to graph	13	
Write results instead of graphing		
Transformations		
Derived function:		

yields (graph on next slide)

Single equation dynamic forecasting (cont.):

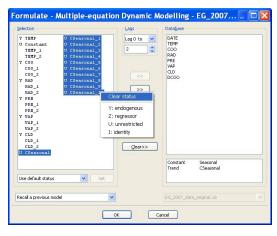
• Out-of-sample forecasts of DCOO from 2001(1)-2002(12):

• In order to generate forecasts of the *level* of COO, recall that any variable y_T satisfies $y_T = y_0 + \sum_{t=1}^{T} \Delta y_t$. In other words, tick "Write results instead of graphing" and use Algebra or Calculator (Model \rightarrow Calculator) to obtain the forecasts of the levels COO

Multiple-equation modelling with Autometrics (two approaches):

1. Seemingly Unrelated Regression (SUR) using OLS/IV, that is, single-equation GETS modelling of each equation separately (requires stationarity of regressors)

2. Simultaneous variable deletion (or non-deletion) across equations using vector diagnostic tests but estimation still by OLS (does not require stationarity of regressors), see Doornik and Hendry (2007b, pp. 29-31). (NOTE: IV estimation not available with this strategy)


 \rightarrow Model type: "Unrestricted system" (system of URFs), see Doornik and Hendry (2007b, chapter 3)

Formulate a system: (Model \rightarrow) PcGive \rightarrow Category: "Models for time series data" \rightarrow Model class: "Multiple-equation dynamic modelling using PcGive" \rightarrow "Formulate"

PcGive	- Models for time-series data	
All		
Module Category	PcGive Models for time-series data	~
Model class	Multiple-equation Dynamic Modelling using PcGive	~
0	Formulate > Estimate > Konstructure Konstructure Konstructure Test	
	Options Close	

Multiple-equation modelling with Autometrics using second approach. *Example*: 2007 Econometric Game, Question 2

• My GUM: A six-dimensional VAR(2) of $y_t = (TEMP_t, COO_t, RAD_t, PRE_t, VAP_t, CLD_t)$, with a constant and 11 centered seasonals in each of the six equations:

• Fixing variables (that is, restricting Autometrics to keep them) now differs:

 \diamond Fixing VAR-lags is not possible, only the exogenous regressors can be fixed

 \diamond Select the exogenous regressors to fix \rightarrow Right-click mouse \rightarrow U: Unrestricted

 \diamond To unfix exogenous regressors, select the regressors to unfix \rightarrow Right-click mouse \rightarrow Clear status

• Lag-deletion is undertaken across equations. For example, $TEMP_1$ is either deleted from all six equations or from none, etc.

Results with default settings:

• NOTE: Autometrics simplifies even though the GUM does not pass all diagnostic checks

 \bullet Four variables are removed from all of the equations: The second lag of TEMP, VAP and CLD, and CSeasonal 10

Other type of analysis:

• Cointegration analysis (applied on the Unrestricted system, not on the simplified model): Model \rightarrow Test \rightarrow Dynamic Analysis and Cointegration Tests $\rightarrow \ldots$

See Doornik and Hendry (2007b, chapter 4)

References:

- Doornik, J. (2009). Autometrics. In J. L. Castle and N. Shephard (Eds.), The Methodology and Practice of Econometrics: A Festschrift in Honour of David F. Hendry. Oxford: Oxford University Press.
- Doornik, J. A. and D. F. Hendry (2007a). Empirical Econometric Modelling PcGive 12: Volume I. London: Timberlake Consultants Ltd.
- Doornik, J. A. and D. F. Hendry (2007b). Empirical Econometric Modelling PcGive 12: Volume II. London: Timberlake Consultants Ltd.
- Hendry, D. F. and H.-M. Krolzig (2001). Automatic Econometric Model Selection using PcGets. London: Timberlake Consultants Press.
- Hendry, D. F. and H.-M. Krolzig (2005). The Properties of Automatic Gets Modelling. Economic Journal 115, C32–C61.
- Hoover, K. D. and S. J. Perez (1999). Data Mining Reconsidered: Encompassing and the General-to-Specific Approach to Specification Search. *Econometrics Journal 2*, 167–191. Dataset and code: http://www.csus.edu/indiv/p/perezs/Data/data.htm.
- Newey, W. and K. West (1987). A Simple Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. *Econometrica* 55, 703–708.
- Sucarrat, G. (2009). Forecast Evaluation of Explanatory Models of Financial Variability. Economics The Open-Access, Open-Assessment E-Journal 3. Available via: http://www.economics-ejournal.org/economics/journalarticles/2009-8.
- Sucarrat, G. and Á. Escribano (2009). Automated Model Selection in Finance: General-to-Specific Modelling of the Mean, Variance and Density. http://www.sucarrat.net/research/autofim.pdf.
- White, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix and a Direct Test for Heteroskedasticity. Econometrica 48, 817–838.